K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

1, Theo định lí Pytago tam giác AHB vuông tại H 

\(AH=\sqrt{AB^2-BH^2}=8cm\)

2, Xét tam giác ABH và tam giác ACH có 

AB = AC ; AH _ chung 

Vậy tam giác ABH = tam giác ACH (ch-cgv) 

3, Vì tam giác ABC cân tại A có AH là đường cao 

đồng thời là phân giác 

Lại có DB = CE ; AB = AC 

=> AD = AE 

Xét tam giác ADH và tam giác AEH có 

AD = AE ( cmt ) ; AH _ chung ; ^DAH = ^EAH 

Vậy tam giác ADH = tam giác AEH (c.g.c) 

=> DH = HE ( 2 cạnh tương ứng ) 

Vậy tam giác HDE cân tại H 

4, Ta có AD/AB = AE/AC => DE//BC 

1: AH=8cm

2: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

4: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

10 tháng 3 2022

làm sao tính đc AH =8cm

 

18 tháng 3 2022

undefinedtham khao

18 tháng 3 2022

undefined

6 tháng 9 2019

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

bn j đó ơi cảm ơn bn đx giải cho mk nhung phần b) sai rồi nha

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0