Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{ABC}=\widehat{AHB}=90^o\)
\(\widehat{BAC}\) chung
\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g)
b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)
c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
hay \(10^2=6^2+AC^2\)
\(AC^2=64\)
\(AC=8\left(cm\right)\)
Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)
\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)
\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)
hay \(8^2=4,8^2+HC^2\)
\(HC^2=40,96\)
\(HC=6,4\left(cm\right)\)
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
c, Theo phần b có , tgiac AHD đồng dạng tgiac CED
=? HD/ED = AD/CD
Xét tgiac HDE và tgiac ADC, có:
góc HDE = góc ADC ( 2 góc đối đỉnh)
HD/ED = AD/ CD (cmt)
=> tg HDE đồng dậng tg ADC ( c.g.c)
d, Áp dụng định lý Pytago vào tg ABC , có:
BC^2 = AB^2 + AC^2 = 6^2 + 8^2
=>BC = 10 (cm)
Có : BA^2 = BH. BC
=> BH = 3,6 = HD
=> BD = 2BH = 7,2(cm)
=> DC = BC - BD = 2,8 (cm)
Chứng minh tgiac AHB = tg AHD (c.g.c)
=> AD = AB = 6 (cm)
theo phần b, tg CDE đồng dạng th ADH
=> Dc/DA = DE/DH
=> DE = 1,68
Áp dụng đính lý pytagp vào tg CED
=> DC^2 = EC^2 + De^2
=> EC = 2,24
=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)
Bài làm
Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài,
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác ABC ~ Tam giác HBA ( g - g )
b) Xét tam giác AHD và tam giác CED có:
\(\widehat{AHD}=\widehat{CED}=90^0\)
\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )
=> Tam giác AHD ~ Tam giác CED ( g - g )
=> \(\frac{AH}{EC}=\frac{AD}{DC}\)
\(\Rightarrow AH.CD=AD.EC\)( đpcm )
c) Vì tam giác AHD ~ Tam giác CED ( cmt )
=> \(\frac{HD}{DE}=\frac{AD}{DC}\)
Xét tam giác HDE và tam giác ADC có:
\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )
\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )
=> Tam giác HDE ~ tam giác ADC ( g - c - g )
d) Xét tam giác ABC vuông ở A có:
Theo Pytago có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82
=> BC2 = 36 + 64
=> BC2 = 100
=> BC = 10 ( cm )
Diện tích tam giác ABC là:
SABC = 1/2 . AB . AC
SABC = 1/2 . AH . BC
=> AB . AC = AH . BC
hay 6 . 8 = AH . 10
=> AH = 4,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo pytago có:
HC2 = AC2 - AH2
hay HC2 = 82 - 4,82
=> HC2 = 64 - 23,04
=> HC = 6,4 ( cm )
Ta có: BH + HD + DC = BC
=> HD + HD + DC = BC
=> 2HD + HC - HD = BC
Hay 2HD + 6,4 - HD = 10
=> HD + 6,4 =10
=> HD = 3,6 ( cm )
Ta có: HD + DC = HC
hay 3,6 + DC = 6,4
=> DC = 2,8
Vì D đối xứng với B qua H
=> AH là trung trực của DB
=> AB = AD
=> Tam giác ABD cân tại A
=> AB = AD = 6 cm
vì tam giác AHD ~ tam giác CED ( theo câu b )
=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)
hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)
=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )
=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )
Diện tích tam giác DEC là:
SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )
e) CHo mình xin nghỉ.
4:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc ACH chung
=>ΔACH đồng dạng với ΔBCA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: góc EHD=góc EHA+góc DHA
=1/2*góc AHB+1/2*góc AHC=90 độ
góc EAD+góc EHD=180 độ
=>EADH nội tiếp
=>góc AED=góc AHD và góc ADE=góc AHE
mà góc AHD=góc AHE=45 độ
nên góc AED=góc ADE
=>AD=AE