K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

a) Có tam giác ABC cân tại A => AB=AC

M thuộc AB, N thuộc AC và MN//BC

=> AM=AN

=> Tam giác AMN cân tại A

b) Xét tứ giác BMNC có MN//BC

=> BMNC là hình thang

Xét hình thang BMNC có
AM=AN và AB=AC => MN=NC

=> Hình thang BMNC cân 

=> BN=CM (tính chất hình thang cân)

c) Xét tam giác BMN và tam giác CNM có:

BN chung

\(\widehat{MNB}=\widehat{NBC}\) (MN//BC)

BM=MC (cmt)

=> Tam giác BMN=Tam giác CNM (cgc)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

 Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên...
Đọc tiếp

 

Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.

Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.

Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).

          Bài 4    tam giác ABC, điểm M thuộc cạnh AB.

a) So sánh MC với AM + AC.

b) Chứng minh MB + MC < AB + AC.

- Cộng cùng một số vào hai vế của bất đẳng thức:

a< b => a + c < b + c.

- Cộng từng vế hai bất đẳng thức cùng chiều:

 

          Bài 5      Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.

a) So sánh MB + MC với BC

b) Chứng minh MA + MB + MC >

Bài 6    Cho ABC có hai đường trung tuyến BD, CE

a) Tính các tỉ số

Bài 7    Cho tam giác ABC có hai đường trung tuyến BP, CQ cắt nhau tại G. Trên tia đối của tia PB lấy điểm E sao cho PE = PG. Trên tia đối của tia QG lấy điểm F sao cho QF = QG. Chứng minh:

 a) GB = GE, GC = GE;            b) EF = BC và EF//BC.

b) Chứng minh BD + CE > BC

Bài 8  Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho

AD = AB. Lấy G thuộc cạnh AC sao cho AG =  AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.

Chứng minh:

a) G là trọng tâm BCD;

b) BED = FDE, từ đó suy ra EC = DF;

c) DMF = CME;

d) B, G, M thẳng hàng.

Bài 9. Cho ABC vuông tại A, AB = 6 cm, AC = 8 cm.

a) Tính BC.

b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh .

c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh BCE vuông.

Bài 10  Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:

a) Chứng minh AB //HK;

b) Chứng minh

c) Chứng minh AKI cân,

Bài 11 Cho có tia phân giác Ot. Trên tia Ot lấy điểm C bất kì. Lấy

A Ox, B Oy sao cho OA = OB. Gọi H là giao điểm của AB và Ot. Chứng minh:

a) CA =  CB và CO là phân giác của ;

b) OC vuông góc với AB tại trung điểm của AB;

c) Biết AB = 6 cm, OA = 5 cm. Tính OH

0
5 tháng 2 2017

bai2

ve ho tui hinh

20 tháng 2 2017

giúp tôi nữa

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!