Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)
\(Q\left(x\right)=-3x^5+2x^2-2x+3\)
\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)
\(=x^4+2\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+4x-4\)
Thu gọn + sắp xếp luôn
P(x) = 3x5 + x4 - 2x2 + 2x - 1
Q(x) = -3x5 + 2x2 - 2x + 3
P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )
= ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )
= x4 + 2
P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - ( -3x5 + 2x2 - 2x + 3 )
= 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3
= ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )
= 6x5 + x4 - 4x2 + 4x - 4
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Bài 1 :
Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)
\(=-3x^2+4x^3+x-15\)
\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)
\(=-4x^3-2x+x^2-10\)
\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)
\(=-2x^2-x-25\)
\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)
\(=-8x^3-3x+4x^2+5\)
Chị làm nốt mấy bài sau nhé, tương tự thôi
Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)
\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)
\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)
\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)
\(M=6x^2y-12xy+10xy^2\)
=> bậc của M là 3
b.
f(x) = 5x4 + 4x3 - 10x2 - 7x + 10
g(x) = 4x4 + 5x2 - 9x - 8
f(x) + g(x) = 9x4 + 4x3 - 5x2 - 16x + 2
Bài 4 : a.
f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
b. f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
f(x) + g(x) = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8
Trừ tương tự
Bài 5 cũng như bài 4
\(a,\)
\(A\left(x\right)+B\left(x\right)=\left(-5+x^2-4x+3x^3-3x^5\right)+\left(-x^5+2x-2x^3+6x^4-7\right)\)
\(=-5+x^2-4x+3x^3-3x^5-x^5+2x-2x^3+6x^4-7\)
\(=-4x^5+6x^4+x^3+x^2-2x-12\)
\(A\left(x\right)-B\left(x\right)=\left(-5+x^2-4x+3x^3-3x^5\right)-\left(-x^5+2x-2x^3+6x^4-7\right)\)
\(=-5+x^2-4x+3x^3-3x^5+x^5-2x+2x^3-6x^4+7\)
\(=-2x^5-6x^4+5x^3+x^2-6x+2\)
\(B\left(x\right)-A\left(x\right)=\left(-x^5+2x-2x^3+6x^4-7\right)-\left(-5+x^2-4x-3x^3-3x^5\right)\)
\(=-x^5+2x-2x^3+6x^4-7+5-x^2+4x+3x^3+3x^5\)
\(=2x^5+6x^4+x^3-x^2+6x-2\)
\(b,\)
\(thay\)\(x=1\)\(vào\)\(đa\)\(thức\)\(B\left(x\right)\)\(ta\)\(có\)\(:\)
\(B\left(1\right)=-1^5+2\cdot\left(-1\right)-2\cdot\left(-1\right)^3+6\cdot\left(-1\right)^4-7\)
\(=-1-2+2+6-7=-2\)
\(Vậy\)\(x=1\)\(không\)\(là\) \(nghiệm\)\(của\)\(đa\)\(thức\)\(B\left(x\right)\)
\(Bạn\)\(xem\)\(lại\)\(đề\) \(nha\)
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
M(x) = (2x4 - x4) + (5x3 - x3 - 4x3) + (-x2 + 3x2) + 1
M(x) = x4 + 2x2 + 1
a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4
M(-1) = (-1)4 + 2.(-1)2 + 1 = 4
b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0
=> x4 + 2x2 + 1 > 0
=> M(x) > 0
=> M(x) ko có nghiệm
1/ a/ Ta có:
\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)
\(\Leftrightarrow m-3=0\)
\(\Leftrightarrow m=3\)
b/ Theo câu a thì
\(P\left(x\right)=3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
2/ Tương tự a phân tích nhân tử hộ thôi nha
a/ \(1-5x=0\)
b/ \(x^2\left(x+2\right)=0\)
c/ \(\left(x-1\right)\left(2x-3\right)=0\)
d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm
Bài 2
P(x) + Q(x) = x3 – 6x + 2 + 2x2 - 4x3 + x - 5 = - 3x3 + 2x2 – 5x - 3
P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x3 − 2x2 − 7x+7
Bai 3
a)(x-8)(x3+8)=0
=>x-8=0 hoac x3+8=0
=>x =8 hoac x3 =-8
=>x =8 hoac x =-2
Vậy x=8 hoặc x=-2
b)(4x-3)-(x+5)=3(10-x)
=>4x-3-x-5=30-3x
=>4x-x+3x=30+3+5
=>x(4-1+3)=38
=>6x =38
=>x =\(\dfrac{38}{6}\)
=>x =\(\dfrac{19}{3}\)
Vậy x=\(\dfrac{19}{3}\)