Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có
3n+3 =3(n+1) luôn chia hết cho n+1 với mọi số tự nhiên n
b. ta có :\(5n+19\text{ chia hết cho 2n+1 thì }10n+38\text{ cũng chia hết cho 2n+1}\)
mà \(10n+38=5\left(2n+1\right)+33\text{ chia hết cho }2n+1\) khi 33 chia hết cho 2n+1
hay \(2n+1\in\left\{1,3,11,33\right\}\Rightarrow n\in\left\{0,1,5,16\right\}\)
1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15\)
\(=6.a+12+3\)
\(=6.\left(x+2\right)+3\)
Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3
Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
2) Ta có 3 là số lẻ nên 32018 là số lẻ
11 là số lẻ nên 112017 là số lẻ
Do đó 32018-112017là số chẵn nên chia hết cho 2
3)\(n+4⋮n\)
có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
4)\(3n+7⋮n\)
có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
1. Ta có : 3n + 3 \(⋮n-1\Rightarrow3n-3+6⋮n-1\Rightarrow3\left(n-1\right)+6⋮n-1\)
Vì 3(n - 1) \(⋮\)n - 1
=> 6 \(⋮n-1\)
=> n - 1 \(\inƯ\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
<=> \(n\in\left\{0;2;3;4;7\right\}\)
2) 2n + 6 \(⋮n+1\Rightarrow2\left(n+1\right)+4⋮n+1\)
Vì 2(n + 1) \(⋮\)n + 1
=> 4 \(⋮n+1\)
=> \(n+1\in\left\{1;2;4;-1;-2;-4\right\}\)
<=> n \(\in\left\{0;1;3\right\}\)
3. 10n + 20 \(⋮2n+1\Leftrightarrow5\left(2n+1\right)+15⋮2n+1\)
Vì 5(2n + 1) \(⋮\)2n + 1
<=> 15 \(⋮\)2n + 1
=> 2n + 1 \(Ư\left(15\right)=\left\{1;3;5;15-1;-3;-5;-15\right\}\)
<=> \(n\in\left\{0;1;2;7\right\}\)
TL
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
Bài 1
a/ \(\overline{123a}+3\) chia hết cho 8
\(\Rightarrow\overline{123a}+3=1230+a+3=1233+a=1232+\left(a+1\right)=8.154+\left(a+1\right)\) chia hết cho 8
8.154 chia hết cho 8 => a+1 chia hết cho 8 => a=7
b/ \(\overline{123ab}+8\) chia hết cho 25
\(\Rightarrow\overline{123ab}+8=12300+\overline{ab}+8=25.492+\overline{ab}+8\) chia hết cho 25
25.492 chia hết cho 25 => \(\overline{ab}+8\) chia hết cho 25 => \(\overline{ab}=\left\{17;42;67;92\right\}\)
Bài 2
\(\frac{n^2+2n+7}{n+2}=\frac{n\left(n+2\right)+7}{n+2}=n+\frac{7}{n+2}\)
Để phép chia là chia hết thì 7 phải chia hết cho n+2
\(\Rightarrow n+2=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-9;-3;-1;5\right\}\)
Do n là số tự nhiên => n=5
AI NHANH THÌ MÌNH K 3 CÁI LUÔN NHA.
a) Để n + 2 ⋮ n thì 2 ⋮ n => n \(\in\)Ư(2) = {1; 2}
Vậy n = {1; 2}
b)Để 3n + 5 ⋮ n thì 5 ⋮ n => n \(\in\)Ư(5) = {1; 5}
Vậy n = {1; 5}
c) Để : 18 - 5n ⋮ n thì 18 ⋮ n => \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}
Vậy n = {1;2;3;6;9;18}