Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |2x - 7| = 1
=> 2x - 7 = 1 hoặc 2x - 7 = -1
=> 2x = 1 + 7 hoặc 2x = -1 + 7
=> 2x = 8 hoặc 2x = 6
=> x = 4 hoặc x = 3
Vậy x \(\in\){4;3}
b) (2x - 1)2 + 19 = 100
=> (2x - 1)2 = 100 - 19 = 81
=> (2x - 1)2 = \(\pm\sqrt{81}=\pm9\)
=> 2x - 1 = 9 hoặc 2x - 1 = -9
=> 2x = 10 hoặc 2x = -8
=> x = 5 hoặc x = -4
Vậy x \(\in\){5;-4}
c) x + 24 = 26 + 2x
=> x - 2x = 26 - 24
=> -x = 2
=> x = -2
Vậy x = -2
Bài 2 : Ta có : \(\left|x-1\right|\ge0\forall x\)
=> \(7-\left|x-1\right|\ge7\forall x\)
Dấu bằng xảy ra khi và chỉ khi x - 1 = 0 => x = 1
Vậy GTLN của biểu thức là 7 khi x = 1
Bài 3 bạn tự làm
Mik đọc công thức bạn tự làm nhé áp dụng công thức nhé:
b1: a)SCSH: ( 2017 - 13 ) : 3 + 1 = 669 ( số hạng )
b2: Tổng: ( 2017 + 13 ) . 669 : 2 = 679035
b) SCSH: ( 2000 - 2 ) : 2 + 1 = 1000 ( số hạng )
Tổng: ( 2000 + 2 ) . 1000 : 2 = 1001000
c)SCSH: ( 102 - 1 ) : 1 + 1 = 102 ( số hạng )
Tổng: ( 102 + 1 ) . 102 : 2 = 5253
Câu b trc nhé
M = | x - 4 | + 2021
Ta có \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow\left|x-4\right|+2021\ge2021\forall x\)
\(\Rightarrow M\ge2021\forall x\)
Dấu "= " xảy ra \(\Leftrightarrow\left|x-4\right|=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy Min M = 2021 \(\Leftrightarrow x=4\)
Tại s lại là tìm max ạ
(x - 1)(y + 3) = - 4
=> x - 1; y + 3 thuộc Ư(-4)
ta có bảng :
x-1 | 1 | -1 | -2 | 2 | -4 | 4 |
y+3 | -4 | 4 | 2 | -2 | 1 | -1 |
x | 2 | 0 | -1 | 3 | -3 | 5 |
y | -7 | 1 | -1 | -5 | -2 | -4 |
6/7+5/8÷5-3/16×(-2)²
=6/7+1/8-3/4
=55/56-3/4
=13/56
b.2/3 + 1/3.( -4/9 + 5/6 ) : 7/12
=2/3 + 1/3. ( -8/18 + 15/18 ) : 7/12
=2/3 + 1/3 . 7/18 : 7/12
=2/3 + 7/54 : 7/12
= 2/3 + 2/9
=6/9 + 2/9
= 8/9
Bài 1: a) \(-2.\left(2x-8\right)+3.\left(4-2x\right)=\left(-72\right)-5.\left(3x-7\right)\)
\(-4x+16+12-6x=-72-15x+35\)
\(-4x-6x+15x=-72+35-16-12\)
\(5x=-65\)
\(x=-\frac{65}{5}\)
\(x=-13\)
b) \(3.\left|2x^2-7\right|=33\)
\(\left|2x^2-7\right|=\frac{33}{3}=11\)
\(\Rightarrow\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Rightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\\end{cases}}}\)
Bài 2:
Ta có: \(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(2\left(n-3\right)+7⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\)
Để \(2\left(n-3\right)+7⋮n-3\)
Thì \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n-3 | -1 | 1 | 7 | -7 |
n | 2 | 4 | 10 | -4 |
Vậy.....
hok tốt!!