Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(S=1+3+5+7+...+297+299\)
Tổng trên là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị.
Số số hạng của tổng trên là: \(\left(299-1\right)\div2+1=150\)(số hạng)
Giá trị của tổng trên là: \(\left(299+1\right)\times150\div2=22500\)
Bài 2:
\(100-7\times\left(x-5\right)=58\)
\(\Leftrightarrow7\times\left(x-5\right)=100-58\)
\(\Leftrightarrow7\times\left(x-5\right)=42\)
\(\Leftrightarrow x-5=42\div7\)
\(\Leftrightarrow x-5=6\)
\(\Leftrightarrow x=6+5\)
\(\Leftrightarrow x=11\)
a) 20,8 x 45 + 0,37 x 15 + 20,8 x 55 x 0,63
= 20,8 x ( 45 + 55 x 0,63 ) + 0,37 x 15
= 20,8 x ( 45 + 34,65 ) + 5,55
= 20,8 x 79,65 + 5,55
= 1656,72 + 5,55
= 1662,27
b) ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 và 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x [( 1 - 1 ) + ( 1/3 - 1/3 ) ]
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0
a) \(1+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(=\frac{16}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\)
\(=\frac{23}{16}\)
b) \(2-\frac{1}{8}-\frac{1}{12}-\frac{1}{16}\)
\(=\frac{96}{48}-\frac{6}{48}-\frac{4}{48}-\frac{3}{48}\)
\(=\frac{83}{48}\)
c) \(\frac{4}{99}\cdot\frac{18}{5}\div\frac{12}{11}+\frac{3}{5}\)
\(=\frac{4\cdot18\cdot11}{99\cdot5\cdot12}+\frac{3}{5}\)
\(=\frac{4\cdot9\cdot2\cdot11}{9\cdot11\cdot5\cdot4\cdot3}+\frac{3\cdot3}{3\cdot5}\)
\(=\frac{2}{15}+\frac{9}{15}=\frac{11}{15}\)
d) \(\left(1-\frac{3}{4}\right)\left(1+\frac{1}{3}\right)\div\left(1-\frac{1}{3}\right)\)
\(=\frac{1}{4}\cdot\frac{4}{3}\div\frac{2}{3}\)
\(=\frac{1\cdot4\cdot3}{4\cdot3\cdot2}=\frac{1}{2}\)
a) \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)+\left(\frac{1}{2.4}+...+\frac{1}{98.100}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=2\cdot\frac{100}{101}+2\cdot\frac{49}{100}=\frac{200}{101}+\frac{49}{50}\)
câu b mk ko bk! xl bn nha!
mk nhầm
...
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\) 1/100)
= 1/2.(1-1/101) + 1/2.(1/2-1/100)
=1/2.100/101 + 1/2.49/100
= 50/101 + 49/200
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
1 a) (x+ 1) + (x + 2 ) + (x + 3) + ... + (x + 100) = 205550 (100 cặp)
=> (x + x + ... + x) + (1 + 2 + 3 + ... + 100) = 205 550
100 số hạng x 100 số hạng
=> 100.x + 100 . 101 : 2 = 205 550
=> 100.x + 5050 = 205 550
=> 100 . x = 205 550 - 5050
=> 100 . x = 200500
=> x = 200500 : 100
=> x = 2005