Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
dựa vào nhé
A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1).(n+2)
=>A=n.(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)-0.1.2.3
=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + .... + (n - 1).n.(n + 1).[(n + 2) - (n - 2)]
4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
4B = (n-1)n(n+1)(n+2)
B = (n-1)n(n+1)(n+2) : 4
Ta có : 4B =4 . ( 1.2.3 + 2.3.4 + ...+ (n - 1 )n( n + 1 )
<=> 4B = 1.2.3 .( 4 - 0 ) + 2.3.4 .( 5- 1 ) + ... + ( n - 1 ) n ( n + 1 ) [ ( n + 2 ) - ( n - 2 ) ]
<=> 4B = 1 . 2 . 3 . 4 +2 . 3. 4 .5 -1.2.3 .4 + ... + ( n- 1 ) n ( n + 1 ) ( n + 2 )- ( n-1)( n+1).n/( n- 2 )
<=> 4B = ( n- 1 ).( n+1 ).n.( n + 2 )
<=> B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)
Vậy B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)
Ta có 4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1).(n+2-n+2)
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)
Vậy B=\(\frac{\text{(n-1)n(n+1)(n+2)}}{4}\)
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + ... + (n - 1)n(n + 1)[(n + 2) - (n - 2)]
4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 + ... + (n - 1)n(n + 1)(n + 2) - (n-2)(n-1)n(n+1)
4B = (n - 1)n(n + 1)(n + 2)
B = (n - 1)n(n + 1)(n + 2) : 4
Bài 1:
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
\(=n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>A=[n.(n+1).(n+2)] /3
B = 1.2.3 + 2.3.4 + ... + (n-1)n(n+1)
=> 4B = 1.2.3.4 + 2.3.4.4 + ... + (n-1)n(n+1)4
= 1.2.3.(4-0) + 2.3.4.(5-1) + ... + ((n-1)n(n+1)[(n+2) - (n-2)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
= (n-1)n(n+1)(n+2)
=> B = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}.\frac{n^2+3n}{2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)
ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
\(\Leftrightarrow B=\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)