K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

a)

\(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\\ < =>3x-9+5-10x=90\)

\(< =>3x-10x=90+9-5\\ < =>-7x=94\\ < =>x=-\dfrac{94}{7}\)

b)

\(\left(2x-3\right)\left(x^2+1\right)=0\\ < =>\left[{}\begin{matrix}2x-3=0\\x^2+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x^2=-1\left(voli\right)\end{matrix}\right.\\ < =>x=\dfrac{3}{2}\)

c)

\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(x\ne-1;x\ne2\right)\)

suy ra: \(2\left(x-2\right)-x-1=3x-11\)

\(< =>2x-4-x-1-3x+11=0\)

\(< =>2x-x-3x=4+1-11\\ < =>-2x=-6\\ < =>x=3\left(tm\right)\)

19 tháng 2 2023

a) \(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\)

\(\Leftrightarrow3\left(x-3\right)+5\left(1-2x\right)=90\)

\(\Leftrightarrow-4-7x=90\)

\(\Leftrightarrow x=-\dfrac{94}{7}\)

b) \(\left(2x-3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow2x-3=0\) (Vì \(x^2+1>0\))

\(\Leftrightarrow x=\dfrac{3}{2}\)

c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(Đk:x\ne-1;x\ne2\right)\)

\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)

\(\Leftrightarrow x-5=3x-11\)

\(\Leftrightarrow x=3\)

a: \(\Leftrightarrow1-x+3x+3=2x+3\)

=>2x+4=2x+3(vô lý)

b: \(\Leftrightarrow\left(x+2\right)^2-2x+3=x^2+10\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>4x+7=10

hay x=3/4

d: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x-1\right)\left(x+1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+17x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow-3x^2+17x-8=-3x^2-5x+2\)

=>22x=10

hay x=5/11

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

24 tháng 8 2018

a. (x + 2)(x2 – 3x + 5) = (x + 2)x2

⇔ (x + 2)(x2 – 3x + 5) – (x + 2)x2 = 0

⇔ (x + 2)[(x2 – 3x + 5) – x2] = 0

⇔ (x + 2)(\(x^2\) – 3x + 5 – \(x^2\)) = 0

⇔ (x + 2)(5 – 3x) = 0

⇔ x + 2 = 0 hoặc 5 – 3x = 0

x + 2 = 0 ⇔ x = -2

5 – 3x = 0 ⇔ x = \(\dfrac{5}{3}\)

Vậy phương trình có nghiệm x = -2 hoặc x =\(\dfrac{5}{3}\)

c.\(2x^2\) – x = 3 – 6x

\(2x^2\) – x + 6x – 3 = 0

⇔ (\(2x^2\) + 6x) – (x + 3) = 0

⇔ 2x(x + 3) – (x + 3) = 0

⇔ (2x – 1)(x + 3) = 0

⇔ 2x – 1 = 0 hoặc x + 3 = 0

2x – 1 = 0 ⇔ x = 1/2

x + 3 = 0 ⇔ x = -3

Vậy phương trình có nghiệm x = \(\dfrac{1}{2}\) hoặc x = -3