Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có : BAx = 1300 y E F B C D x A
ABD = 500
-> BAx + ABD = 1300 + 500 = 1800
=> BAx và ABD là cặp góc cùng phía bù nhau
=> Ax // BD
b, Ax // BD => C1 = A45 ( So le trong )
=> C1 + A3 = A45 + A3 = A345 = 1300
Góc B = 50 độ
Vậy B + C1 + A3 = 180 độ
=> Tổng 3 góc trong tam giác ABC = 1800
c, A12345 = 180 0
A345 = 1300
=> A12 = 500
AF là phân giác của A12 => A1 = A2 = 500/2 = 250
AD là phân giác của A345 => A34 = A5 = 650
=> A3 + A34 = 250 + 650 = 900
ta có : FAD = 900
=> AF vuông góc với AC
B D x K C H A y 1 2 3
Có Bx _|_ BC tại B (gt)
=> ^CBx = 90o
=> B1 + B2 = 90o (1)
Cmtt được B2 + B3 = 90o (2)
Từ (1)(2) => B1 = B3
Xét ∆BAD và ∆BEC có :
BD = BC (gt)
B1 = B3 (cmt)
BA = BE
=> ∆BAD = ∆BEC (c-g-c)
=> DA = CE
b) Gọi H là giao điểm của DA và CE
và K là ______________ DA và BC
Ta có ^HKC = ^BKA (đối đỉnh) (3)
Có ∆BAD = ∆BEC (cmt)
=> ^BDA = ^BCE
Hay BDK = HCK
Từ (3),(4) => HKC + HCK = BKD + ADK (5)
....đoạn tiếp để sau làm cho :v
x y D B A C E
A ) Ta có : \(\Delta DAB=\Delta CEB\)( c . g . c )
\(\Rightarrow BE=BA\)
\(\Rightarrow\widehat{DBA}=\widehat{CBE}\)( PHỤ \(\widehat{ABC}\))
\(\Rightarrow DA=EC\)( đpcm)
b) Kéo dài AB cắt BC tại \(I\)cắt EC tại K
+ \(\widehat{ICK}=\widehat{IDB}\)( do (* ) )
+ \(\widehat{DBI}=\widehat{CIK}\)( VÌ 2 GÓC ĐỐI ĐỈNH )
\(\Rightarrow\widehat{ICK}+\widehat{CIK}=\widehat{IDB}+\widehat{DIB}\)
Mà \(\widehat{IDB}+\widehat{DIB}=90\)
Do tam giác DBI vuông tại B nên ICK + CIK = \(90^o\)
\(\Rightarrow\widehat{CIK}=90^o\)
\(\Rightarrow DA\perp EC\)
Chúc bạn học tốt !!!
a) Xét tam giác BAD và tam giác BAC, có:
góc BAD = góc BAC = 90o (gt)
BA: cạnh chung
góc ABD = góc ABC (Vì AB là p/g của BC)
Nên: Tam giác BAD = tam giác BAC ( g - c - g)
=> BD = BC (2 cạnh t/ư)
Ta có: AC vuông góc với AB (gt)
AC vuông góc với CF (gt)
=> AB // CF (Quan hệ từ _|_ -> //)
Nên: góc ABC = góc FCB (2 góc so le trong = nhau)
Lại có: CD vuông góc với CF (gt)
BF vuông góc với CF (gt)
=> CD // BF (Quan hệ từ _|_ -> //)
Hay: AC // BF
Do đó: góc ACB = góc FBC (2 góc so le trong = nhau)
Xét tam giác BFC và tam giác CAB, có:
góc FBC = góc ACB (cmt)
BC: cạnh chung
góc FCB = góc ABC (cmt)
Nên: tam giác BFC = tam giác CAB ( g - c - g)
=> góc BAC = góc CFB ( 2 góc t/ư)
Mà: góc BAC = 90o
Do đó: góc CFB = góc BAC = 90o
Xét tam giác BEF và tam giác BCF, có:
góc EBF = góc CBF (Vì BF là p/g của góc CBE)
BF: cạnh chung
góc BFE = góc BFC = 90o (cmt)
Nên: tam giác BEF = tam giác BCF ( g - c - g)
Vậy góc BCF = góc BEF ( 2 góc t/ư)
Hay: góc BCE = góc BEC (đpcm)
b) Trong tam giác ABC, có:
góc A + góc B + góc C = 180o (T/c tổng 3 góc trong 1 tam giác)
Vậy ........
c)Ta có: góc BFC = 90o (cm câu a)
Vậy BF vuông góc với CE (đpcm)
Mk ko chắc chắn ở câu b nhé!
Bài 1:
K D A H E B M C
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
x D A B C E y
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC