Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
huhu mọi người ơi em bị type lỗi ấy ạ, cái dòng số có gạch trên đầu là mẫu số, còn không có gạch trên đầu là tử số nhé ạ. Mọi người giúp em với em đang cần gấp. cảm ơn mọi người
Ta có a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
<=> a2 + b2 + c2 = -(2ab + 2bc +2ca)
(a + 2b)2 + (b + 2c)2 + (c + 2a)2
= a2 + 4ab + 4b2 + b2 + 4bc + 4c2 + c2 + 4ca + 4a2
= 5a2 + 5b2 + 5c2 + 4ab + 4bc + 4ca
= 5(a2 + b2 + c2) + 4ab + 4bc + 4ca
= 5[ - (2ab + 2bc +2ca)] + 4ab +4bc +4ca
= -10ab - 10bc - 10ca + 4ab + 4bc + 4ca
= -6(ab + bc + ca)
Lại có (a - 2b)2 + (b - 2c)2 + (c - 2a)2
= a2 - 4ab + 4b2 + b2 - 4bc + 4c2 + c2 - 4ca + 4a2
= 5a2 + 5b2 + 5c2 - 4ab - 4bc - 4ca
= 5(a2 + b2 +c2) - 4ab - 4bc - 4ca
= 5[- (2ab + 2bc +2ca)] - 4ab - 4bc - 4ca
= -10ab - 10bc - 10ca - 4ab - 4bc - 4ca = -14(ab + bc + ca)
Khi đó \(\frac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}=\frac{-6\left(ab+bc+ca\right)}{-14\left(ab+bc+ca\right)}=\frac{3}{7}\)
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) (do a+b+c # 0)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (bn nhân với 2 rồi tách, nhóm lại nhé)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)\(a=b=c\)
\(D=\left(\frac{a}{2b}\right)^2+\left(\frac{b}{2c}\right)^2+\left(\frac{c}{2a}\right)^2\)
\(=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\)\(=\frac{3}{4}\)
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)