Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)
AD = AE (GT)
=> AB- AE= AC- AD
=> BE = CD
XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)
CÓ : BE = CD ( CMT)
\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)
BC LÀ CẠNH CHUNG
\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)
\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)
2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)
CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)
AE = AD (GT)
CE = BD ( pa)
\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)
CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)
BE = CD ( pa)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)
\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)
3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)
CHU VI CỦA TAM GIÁC ABC LÀ:
4,8+ 4,8+ 10 = 19,6 (CM)
KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM
CHÚC BN HỌC TỐT!!!!!
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
A B C D E H 1 2 3 4
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEDC và ΔDEB có
DE chung
\(\widehat{EDC}=\widehat{DEB}\)
DC=EB
Do đó: ΔEDC=ΔDEB
Suy ra: \(\widehat{GED}=\widehat{GDE}\)
hay ΔGED cân tại G