Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x\(^2\) + 1 =82
=>x\(^2\) = 82 -1 = 81
=>x\(^2\) = 9\(^2\)
=>x =9 hoặc x = -9
b,x\(^2\) + \(\dfrac{7}{4}\) =\(\dfrac{23}{4}\)
=>x\(^2\) =\(\dfrac{23}{4}\) -\(\dfrac{7}{4}\)
=>x\(^2\) =\(\dfrac{16}{4}\) =4
=>x\(^2\) = 2\(^2\)
=>x = 2
a/ x2 + 1 = 2 => x2 = 2 - 1 = 1 => x = 1 hoặc x=-1
b/ x2 + 7/4 = 23/4 => x2 = 23/4 - 7/4 = 4 => x=2 hoặc x=-2
c/ ( 2x+3)2 = 25 => ( 2x+3)2 = 5^2 => 2x+3 = 5 => 2x = 2 => x=1
Bài 10: Tìm x, y biết: x/y = 2/5 và x + y = 70
Theo bài ra ta có
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{70}{7}=10\)
\(\hept{\begin{cases}\frac{x}{2}=10\\\frac{y}{5}=10\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=50\end{cases}}}\)
Vậy x;y = {10;50}
Bài 13. Mẹ bạn Minh gửi tiền tiết kiệm 2 triệu đồng theo thể thức “có kì hạn 6 tháng”. Hết thời hạn 6 tháng, mẹ Minh được lĩnh cả vốn lẫn lãi là 2 062 400.Tính lãi suất hàng tháng của thể thức gửi tiết kiệm này.
Giải
Số tiền lãi tiết kiệm trog 6 tháng của 2 triệu đồng lak :
2 062 400 - 2 000 000 = 62 400 ( đồng )
Số tiền lãi suất hàng tháng của thể chức gửi tiết kiệm này lak
62 400 : 6 = 10 400 ( đồng )
Vậy ...
\(\left(2x-3\right)^2=25\)
\(\Rightarrow\left(2x-3\right)^2=5^2\)
\(\Rightarrow2x-3=5\)
\(\Rightarrow2x=5+3\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
Bài 1
A = \(\frac{3}{7}.\left(\frac{3}{7}\right)^{19}\)= \(\left(\frac{3}{7}\right)^{20}\)
B = \(\left[\left(-\frac{3}{7}\right)^5\right]^4\)= \(\left(-\frac{3}{7}\right)^{20}\)
Bài 2
a. (2x - 3)2 = 25
<=> \(\orbr{\begin{cases}2x-3=5\\2x-3=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Vậy ...
b. \(\frac{27}{3^x}\)= 3
<=> 27 = 31+x
<=> 33 = 31+x
<=> 3 = 1 + x
<=> x = 2
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)
a, x : (-1/2)^3 = -1/2
=> x : (-1/8) = -1/2
=> x = 4
vậy_
b, (3/4)^5.x = (3/4)^7
=> x = (3/4)^7 : (3/4)^5
=> x = (3/4)^2
=> x = 9/16
vậy-
c, (3/5)^8 : x = (-3/5)^6
=> (3/5)^8 : x = (3/5)^6
=> x = (3/5)^8 : (3/5)^6
=> x = (3/5)^2
=> x= 9 /25
a. x2 + 1 = 82
=> x2 = 81
=> x2 = 92
=> x = 9 hoặc x = - 9
b. x2 + 7/4 = 23/4
=> x2 = 4
=> x2 = 22
=> x = 2 hoặc x = - 2
c. ( 2x + 3 )2 = 25
=> ( 2x + 3 )2 = 52
=> 2x + 3 = 5 hoặc 2x + 3 = - 5
=> x = 1 hoặc x = - 4
a, \(x^2+1=82\Leftrightarrow x^2=81\Leftrightarrow x=\pm9\)
b, \(x^2+\frac{7}{4}=\frac{23}{4}\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
c, \(\left(2x+3\right)^2=25\Leftrightarrow2x+3=\pm5\Leftrightarrow\orbr{\begin{cases}2x+3=5\\2x+3=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}}\)