K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Bài 11*.

Ta có : \(\hept{\begin{cases}963⋮9\\2493⋮9\\351⋮9\end{cases}}\)

A\(⋮\)9\(\Leftrightarrow\)x\(⋮\)9

\(\Rightarrow\)x là số tự nhiên chia hết cho 9

Vậy x là số tự nhiên chia hết cho 9.

A\(⋮̸\)9\(\Leftrightarrow\)x\(⋮̸\)9

\(\Rightarrow\)x là số tự nhiên không chia hết cho 9

Vậy x là số tự nhiên không chia hết cho 9.

Bài 12*.

A= 1+2+22+...+22010

2A=2+22+23+...+22011

2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)

A=22011-1=B

Vậy A=B.

13 tháng 4 2020

Bài 12

A=20+21+22+23+....+22010

<=> 2A=2+22+23+24+....+22011

<=> A=22011-2

=> A<B

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

20 tháng 10 2021

Bạn hc trường THCS Trọng Điểm đúng ko. Nhìn đề thấy quen quen

23 tháng 10 2021

Ko, phú diễn

16 tháng 12 2018

bài 8

c) chứng minh \(\overline{aaa}⋮37\)

ta có: \(aaa=a\cdot111\)

\(=a\cdot37\cdot3⋮37\)

\(\Rightarrow aaa⋮37\)

k mk nha

k mk nha.

#mon

16 tháng 12 2018

Trả lời 1 bài cũng đc

21 tháng 10 2018

Lưu ý : 

\(\Rightarrow\)

Ai trả lời được sẽ được tặng 3 k !

Nhanh lên nha các bạn !

21 tháng 10 2018

a, Ta có: \(M=7^{2019}+7^{2018}-7^{2017}.\)

\(=2017^{2017}\left(7^2+7-1\right)=55.2017^{2017}\)

\(=11.5.2017^{2017}⋮11\)

f,\(2P=2^2+2^3+2^4+...+2^{60}+2^{61}\)

\(2P-P=P=\left(2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(2+2^2+2^3+...+2^{59}+2^{60}\right)\)

\(P=2^{61}-2\)

12 tháng 8 2018

Bài 1:

Tổng của 6 STN liên tiếp coi là:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15⋮̸6\)

KL: Tổng của 6 STN liên tiếp không chia hết cho 6.

Bài 2:

\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )

\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)

KL; đpcm.

Bài 3 :

a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)

KL: ...

b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)

KL: ...