Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
\(A=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)\left(5x+4\right)^2\)
\(=\left(5x-1\right)-2\left(5x-1\right)\left(5x+4\right)^3\)
\(=\left(5x-1\right)\left(1-2\left(5x+4\right)^3\right)\)
\(=\left(5x-1\right)\left(1-2\left(125x^3+300x^2+240x+64\right)\right)\)
\(=\left(5x-1\right)\left(1-250x^3-600x^2-480x-128\right)\)
\(=5x-1250x^4-3000x^3-2400x^2-640x-1+250x^3+600x^2+480x+128\)
\(=-1250x^4-2750x^3-1800x^2-110x+127\)
(Số hơi to)
\(B=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(B=\left(x-y\right)^3+\left(y+x\right)^3-\left(x-y\right)^3-3xy\left(x+y\right)\)
\(B=\left(y+x\right)^3-3xy\left(x+y\right)\)
\(B=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(B=\left(x+y\right)\left[x^2+2xy+y^2-3xy\right]\)
\(B=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá