Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử họ đường thẳng tiếp xúc với đường tròn (C) tâm \(I\left(a;b\right)\) bán kính R
\(\Rightarrow\) với mọi góc \(\alpha\) ta luôn có:
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|\left(a-1\right)cos\alpha+\left(b-1\right)sin\alpha-4\right|}{\sqrt[]{sin^2\alpha+cos^2\alpha}}=R\)
\(\Leftrightarrow\left|\left(a-1\right)cos\alpha+\left(b-1\right)sin\alpha-4\right|=R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\\\left|-4\right|=R\end{matrix}\right.\) \(\Rightarrow R=4\)
a) \(\dfrac{\sin2\text{a}+\cos a}{1+\cos2\text{a}+\cos a}=2\tan a\)
a) \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos\alpha}=\dfrac{2sin\alpha cos\alpha+sin\alpha}{2cos^2\alpha+cos\alpha}\)\(=\dfrac{sin\alpha\left(2cos\alpha+1\right)}{cos\alpha\left(2cos\alpha+1\right)}=\dfrac{sin\alpha}{cos\alpha}=tan\alpha\).
Gọi C là giao điểm của AB và \(\Delta\), O là giao điểm IM và AB
Gọi \(I=\left(m;n\right)\Rightarrow IM:x-3y-m+3n=0\)
\(M:\left\{{}\begin{matrix}x-3y-m+3n=0\\x+y=0\end{matrix}\right.\Rightarrow M=\left(\dfrac{m-3n}{4};\dfrac{3n-m}{4}\right)\)
\(\Rightarrow IM=\sqrt{\left(\dfrac{m-3n}{4}-m\right)^2+\left(\dfrac{3n-m}{4}-n\right)^2}=\dfrac{\sqrt{10}\left|m+n\right|}{4}\)
\(d\left(I,\Delta\right)=\dfrac{\left|m+n\right|}{\sqrt{2}}=2\sqrt{2}\Rightarrow\left|m+n\right|=4\left(1\right)\)
\(\Rightarrow IM=\sqrt{10}\)
Ta có \(IO.IM=IA^2=R^2\Rightarrow IO=\dfrac{IB^2}{IM}=\dfrac{4}{\sqrt{10}}\)
\(d\left(I;AB\right)=\dfrac{\left|3m+n-2\right|}{\sqrt{10}}=\dfrac{4}{\sqrt{10}}\Rightarrow\left|3m+n-2\right|=4\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\) tìm được tọa độ điểm I
Đến đây viết phương trình đường tròn tâm I có bán kính \(R=\sqrt{2}\) là được.
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
a) \(sin\left(270^o-\alpha\right)=sin\left(-90^o-\alpha\right)=-sin\left(90^o+\alpha\right)\)\(=-cos\alpha\).
b) \(cos\left(270^o-\alpha\right)=cos\left(-90^o-\alpha\right)=cos\left(90^o+\alpha\right)\)\(=-sin\alpha\).
c) \(sin\left(270^o+\alpha\right)=sin\left(-90^o+\alpha\right)=-sin\left(90^o-\alpha\right)\)\(=-cos\alpha\).
d) \(cos\left(270^o+\alpha\right)=cos\left(-90^o+\alpha\right)=cos\left(90^o-\alpha\right)\)\(=sin\alpha\).
Coi BPT là bậc 2 với tham số \(sina;cosa\)
Đặt \(f\left(x\right)=\left(1+sin^2a\right)x^2-2\left(sina+cosa\right)x+1+cos^2a\)
Ta có: \(1+sin^2a>0;\forall a\)
\(\Delta'=\left(sina+cosa\right)^2-\left(1+sin^2a\right)\left(1+cos^2a\right)\)
\(=sin^2a+cos^2a+2sina.cosa-1-sin^2a-cos^2a-sin^2a.cos^2a\)
\(=-sin^2a.cos^2a+2sina.cosa-1\)
\(=-\left(sina.cosa-1\right)^2=-\left(\frac{1}{2}sin2a-1\right)^2\)
\(=-\left(\frac{sin2a-2}{2}\right)^2\)
Do \(sin2a-2< 0;\forall a\Rightarrow\left(\frac{sin2a-2}{2}\right)^2>0;\forall a\)
\(\Rightarrow\Delta'< 0;\forall a\Rightarrow f\left(x\right)>0\) với mọi x và a
a.
\(R=d\left(I;d\right)=\dfrac{\left|3-5.\left(-2\right)+1\right|}{\sqrt{1^2+\left(-5\right)^2}}=\dfrac{14}{\sqrt{26}}\)
b.
\(d\left(M;\Delta\right)=\dfrac{\left|4sina+4\left(2-sina\right)\right|}{\sqrt{cos^2a+sin^2a}}=8\)