K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

UCLN(a, b) = 15 => a= 15m, b = 15n (m, n khác 0 ) [1]
BCNN(a,b)= 300. Mà a.b= BCNN(a,b). UCLN(a,b) nên ta có
a.b= 300.15=4500 [2]
Từ 1 và 2 ta có 15m.15n= 4500
225.mn= 4500
=> mn=20=4.5=1.20
với m=4 , n=5 thì a=60, b= 75
với m=1 , n=20 thì a=15 , b=300

Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
                                     15.15.m.n =4500
                                     15^2.m.n  =4500
                                     225.m.n  =4500
                                   =>    m.n  = 20
Suy ra: m=1 và n=20  hoặc  m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.

18 tháng 10 2018

B = x = 4 y = 0

Các câu còn lại thì mình chịu

Đặt : \(ƯCLN\left(a,b\right)=d\)

\(\Rightarrow a=d.m\)\(;\)\(b=d.n\)\(\left(m,n\in N;\left(a,b\right)=1;m>n\right)\)

\(\Rightarrow BCNN\left(a,b\right)=d.m.n\)

Ta có : \(\frac{ƯCLN\left(a,b\right)}{BCNN\left(a,b\right)}=\frac{1}{6}\)

\(\Rightarrow\frac{d}{d.m.n}=\frac{1}{6}\)

\(\Rightarrow m.n=6\)

\(\Rightarrow a-b=d\left(m-n\right)=5\)

Ta lại có : \(\left(m,n\right)=1\)\(;\)\(m.n=6\)\(;\)\(m>n\)

\(\Rightarrow\left(m,n\right)\in\left\{\left(6;1\right);\left(3;2\right)\right\}\)

Xét từng TH :

+) TH1 : \(m=6\)\(;\)\(n=1\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(6-1\right)=5\)

\(\Rightarrow d.5=5\)

\(\Rightarrow d=1\)

\(\Rightarrow a=d.m=1.6=6\)

\(\Rightarrow b=d.n=1.1=1\)

+) TH2 : \(m=3\)\(;\)\(n=2\)

\(\Rightarrow d\left(m-n\right)=5\)

\(\Rightarrow d\left(3-2\right)=5\)

\(\Rightarrow d.1=5\)

\(\Rightarrow d=5\)

\(\Rightarrow a=d.m=5.3=15\)

\(\Rightarrow b=d.n=5.2=10\)

Vậy \(\left(a,b\right)\in\left\{\left(6;1\right);\left(15;10\right)\right\}\)

Cho mk hỏi 

BCNN(a,b)=a.b=d.n.d.m

Thì sao có thể =d.n.m được

Chúc bn học tốt

Thanks bn nhiều

30 tháng 7 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)

Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.

\(\frac{a}{b}<1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b.\left(k+1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a

20 tháng 6 2016

làm tắt quá chả hiểu j cả
 

29 tháng 11 2019

Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath

Ta có UCLN(a,b).BCNN(a,b)=a.b=300.15=4500

mà a+15=b

=>a=60,b=75

11 tháng 8 2018

AI NHANH THÌ MÌNH K 3 CÁI LUÔN  NHA.

11 tháng 8 2018

a) Để n + 2  ⋮ n thì  2  ⋮ n => n \(\in\)Ư(2) = {1; 2}

Vậy n = {1; 2}

b)Để  3n + 5 ⋮ n thì 5  ⋮ n => n \(\in\)Ư(5) = {1; 5}

Vậy n = {1; 5}

c) Để : 18 - 5n  ⋮ n thì 18  ⋮ n =>  \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}

Vậy n = {1;2;3;6;9;18}

30 tháng 11 2018

ab = ab

ba = ba

30 tháng 11 2018

* * *

câu a hình như thiếu đề

b) ab+ba

= 10a+b+10b+a

= 11a + 11b (Phần sau tự c/m vì nó dễ)

c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận

* * *

a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )

Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)

= a+a+1+a+2+a+3+a+4

= 5a +( 1+2+3+4)

= 5a + 10 (Phần sau tự c/m)

b)tương tự câu a, nhưng kết quả cuối  = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)

Hok tốt!!!! ^_^

28 tháng 5 2018

a) Theo bài ra, ta có:

        \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)

Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)

\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)

\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)

Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)

Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)

\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)

\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)

\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)

\(\Rightarrow b=45:5=9.\)

                                  Vậy \(a=1;b=9;c=5.\)

b) Theo bài ra, ta có:

     \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)

 Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)      

\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.

     \(2012\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)

\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)

          \(92\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}=4n\left(n\in N\right)\)

\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)

Thay vào, ta được :

      \(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)

 \(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)

\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2

\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5 

\(\Rightarrow A⋮5.\)

Vậy A là một số tự nhiên chia hết cho 5.

\(\)