K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

\(\dfrac{x-2}{5}=\dfrac{-2}{2y+1}\)

=>\(\left(x-2\right)\left(2y+1\right)=5\cdot\left(-2\right)=-10\)

mà 2y+1 lẻ

nên \(\left(x-2;2y+1\right)\in\left\{\left(2;-5\right);\left(-2;5\right);\left(-10;1\right);\left(10;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(4;-3\right);\left(0;2\right);\left(-8;0\right);\left(12;-1\right)\right\}\)

Bài 2:

a: \(\left(2x-1\right)^2+4>=4\forall x\)

=>\(B=\dfrac{20}{\left(2x-1\right)^2+4}< =\dfrac{20}{4}=5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

=>\(x=\dfrac{1}{2}\)

b: \(\left(x^2+1\right)^2>=1\forall x\)

=>\(\left(x^2+1\right)^2+5>=1+5=6\forall x\)

=>\(C=\dfrac{10}{\left(x^2+1\right)^2+5}< =\dfrac{10}{6}=\dfrac{5}{3}\forall x\)

Dấu '=' xảy ra khi x=0

25 tháng 6 2024

 

BÀI 4A

\(\dfrac{1}{-2}+\dfrac{1}{-6}+\dfrac{1}{-12}+\dfrac{1}{-20}+\dfrac{1}{-30}+\dfrac{1}{-42}+\dfrac{1}{-56}+\dfrac{1}{-72}+\dfrac{1}{-90}\\ =-1\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ =-1\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =-1\cdot\left(\dfrac{1}{1}-\dfrac{1}{10}\right)=-1\cdot\dfrac{9}{10}=-\dfrac{9}{10}\)

27 tháng 3 2017

2. Tính:

a, \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

=\(\left(\dfrac{-1}{20}+\dfrac{-1}{72}\right)+\left(\dfrac{-1}{30}+\dfrac{-1}{90}\right)+\left(\dfrac{-1}{42}+\dfrac{-1}{56}\right)\)

=\(\left(\dfrac{-18}{360}+\dfrac{-5}{360}\right)+\left(\dfrac{-3}{90}+\dfrac{-1}{90}\right)+\left(\dfrac{-4}{168}+\dfrac{-3}{168}\right)\)

=\(\dfrac{-23}{360}+\dfrac{-4}{90}+\dfrac{-7}{168}\)

=\(\dfrac{-23}{360}+\dfrac{-16}{360}+\dfrac{-15}{360}\)=\(\dfrac{-54}{360}=\dfrac{-3}{20}\)

b, \(\dfrac{5}{2.1}+\dfrac{4}{1.11}+\dfrac{3}{11.2}+\dfrac{1}{2.15}+\dfrac{13}{15.4}\)

=\(\dfrac{5}{2}+\dfrac{4}{1}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{3}{2}+\dfrac{1}{2}.\dfrac{1}{15}+\dfrac{1}{15}.\dfrac{13}{4}\)

=\(\dfrac{5}{2}+\dfrac{1}{11}.\left(\dfrac{4}{1}+\dfrac{3}{2}\right)+\dfrac{1}{15}.\left(\dfrac{1}{2}+\dfrac{13}{4}\right)\)

=\(\dfrac{5}{2}+\dfrac{1}{11}.\dfrac{11}{2}+\dfrac{1}{15}.\dfrac{15}{4}\)

=\(\dfrac{5}{2}+\dfrac{1}{2}+\dfrac{1}{4}\)

=\(\dfrac{10}{4}+\dfrac{2}{4}+\dfrac{1}{4}\)

=\(\dfrac{13}{4}\)

27 tháng 3 2017

3. Tìm x

a, \(\dfrac{x-5}{8}=\dfrac{18}{x-5}\)

\(\left(x-5\right).\left(x-5\right)=8.18\)

\(\left(x-5\right)^2=144\)

\(x-5=\sqrt{144}\)

\(x-5=12\)

\(x=12+5\)

\(x=17\)

b,\(\left(x-2\right)^{10}=\left(2-x\right)^8\)

\(x^{10}-2^{10}=x^8-2^8\)

\(x^{10}+x^8=2^{10}+2^8\)

\(\Rightarrow x=2\)

Câu 1 : Thực hiện phép tính 1 cách hợp lý : a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\) b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\) c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\) d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\) Câu 2 : a) 12 ( x - 5 ) = 7x - 5 b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x...
Đọc tiếp

Câu 1 : Thực hiện phép tính 1 cách hợp lý :

a) \(\dfrac{-12}{7}.\dfrac{4}{35}+\dfrac{12}{7}.\dfrac{\left(-31\right)}{35}-\dfrac{2}{7}\)

b) \(1+2-3-4+5+5-7-8+...+97+98-99-100\)

c) \(A=157.\left(-37\right)-\left(41.53-37.157\right)+51.53\)

d) \(B=\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)

Câu 2 :

a) 12 ( x - 5 ) = 7x - 5

b) Tìm x \(\in\) Z sao cho : ( 2x - 3 ) 2010 = ( 2x - 3 ) 2012

Câu 3 :

1) Cho biểu thức S = 1 + 3 + 32 + 33 +...+ 3202 + 3 203

a) chứng tỏ rằng tổng S chia hết cho 52 .

b) Tìm Chữ số tận cùng trong tổng S .

2 ) Cho biểu thức A= \(\dfrac{2n+1}{2n+5}\) . Chứng tỏ rằng với mọi số tự nhiên n thì A là phân số tối giản .

Câu 4 : So sánh tổng gồm 1006 số hạng :

\(S=\dfrac{1}{1.1.3}+\dfrac{1}{2.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{1006.2011.2013}\) với \(\dfrac{2}{3}\)

1
10 tháng 12 2022

Câu 2:

a: \(\Leftrightarrow12x-60=7x-5\)

=>5x=55

=>x=11

b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)

=>(2x-3)(2x-2)(2x-4)=0

hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)

31 tháng 7 2017

1.Tính hợp lý:

a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65

30 tháng 7 2017

Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6

Bài 1: 

a: =>13x+8=9x+20

=>4x=12

hay x=3

b: \(\Leftrightarrow5x-7=-8-11-3x\)

=>5x-7=-3x-19

=>8x=-12

hay x=-3/2

c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)

e: =>3x+1=-5

=>3x=-6

hay x=-2

a: =>5x=3x-6

=>2x=-6

hay x=-3

b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)

=>x-3=10 hoặc x-3=-10

=>x=13 hoặc x=-7

c: \(\left|x^3+1\right|+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-1

17 tháng 8 2017

a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)

\(\Leftrightarrow3\left(x-2\right)=5x\)

\(\Leftrightarrow3x-6=5x\)

\(\Leftrightarrow5x-3x=6\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)

\(\Leftrightarrow4x+92=2x+80\)

\(\Leftrightarrow4x-2x=80-92\)

\(\Leftrightarrow2x=-12\)

\(\Leftrightarrow x=-6\)

c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)

d, \(B=1+2+2^2+........+2^{2017}\)

\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)

\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)

\(\Leftrightarrow B=2^{2018}-1\)

17 tháng 8 2017

\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)

\(< =>3x-6=5x=>x=-3\)

\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)

\(4x+92=3x+120=>x=28\)

1 tháng 11 2017

đó giúp mk đi màkhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroi

à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đóvuiok

giúp mk nhaok

cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 11 2017

những thánh giỏi toán ơi giúp mk được ko

mk năn nỉ đókhocroi

24 tháng 5 2017

2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

Giải:

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)

\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)

\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)

\(A< 1-\dfrac{1}{9}.\)

\(A< \dfrac{8}{9}_{\left(1\right)}.\)

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)

\(A>\dfrac{4}{10}.\)

\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\).

\(\Rightarrow A< \dfrac{8}{9}\)\(A>\dfrac{2}{5}.\)

\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

Vậy ta thu được \(đpcm.\)

~ Học tốt!!!... ~ ^ _ ^

23 tháng 5 2017

Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến

7 tháng 5 2017

Lời giải:

a, Đặt \(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

\(\Rightarrow A=\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+...+\dfrac{-1}{9.10}\)

\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{5}-\dfrac{1}{5}+...-\dfrac{1}{9}+\dfrac{1}{10}\)

\(\Rightarrow A=\dfrac{-1}{4}+\dfrac{1}{10}\)

\(\Rightarrow A=\dfrac{-3}{20}\)

7 tháng 5 2017

\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{9.10}\\ =\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+\dfrac{-1}{7.8}+\dfrac{-1}{8.9}+\dfrac{-1}{9.10}\)

\(=\dfrac{-1}{4}-\dfrac{-1}{5}+\dfrac{-1}{5}-\dfrac{-1}{6}+\dfrac{-1}{6}-\dfrac{-1}{7}+\dfrac{-1}{7}-\dfrac{-1}{8}+\dfrac{-1}{8}-\dfrac{-1}{9}+\dfrac{-1}{9}-\dfrac{-1}{10}\)

\(=\dfrac{-1}{4}-\dfrac{-1}{10}\\=\dfrac{-1}{4}+\dfrac{1}{10}\\=\dfrac{-5}{20}+\dfrac{2}{20}\\=\dfrac{-3}{20}\)