$x.\left(x+y\right)=-45$x.(x+y)=−45
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

x(x+y)=-45 (1)

y(x+y)=5   (2)

cộng (1) với (2),vế theo vế ta đc:

x(x+y)+y(x+y)=-45+5=-40

=>(x+y)^2=-40

vì (x+y)^2>0;-40<0

=>ko tìm đc cặp (x;y) thỏa mãn

=>số cặp (x;y) thỏa mãn là 0

tik nhé

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

4 tháng 1 2016

Ta có : \(\left(x-3\right)^{2012}\ge0\)  với mọi x

             \(\left(3y-12\right)^{2014}\ge0\) với mọi y

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)  Với mọi x, y

Để \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=> \(\left(x-3\right)^{2012}=0\)               Và   \(\left(3y-12\right)^{2014}=0\)

=> \(x-3=0\)                                 Và     \(3y-12=0\)

=> \(x=3\)                                               Và     \(3y=12\)

=> \(x=3\)                                               Và     \(y=4\)

Vậy cặp số (x;y) thỏa mãn là (3;4)

4 tháng 1 2016

478

Mấy đại ca làm ơn tick giùm em 8 cái em đang rất cần

31 tháng 5 2017

a, Vì hai vế đều ko âm nên ta đuợc :

\(\left|x+y\right|^2\)<=\(\left(\left|x\right|^2+\left|y\right|^2\right)\)

<=> (x+y)(x+y) <= \(\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)

<=> \(x^2+2xy+y^2\) <= \(x^2+2\left|x\right|\left|y\right|+y^2\)

<=> xy <= |xy| ( Luôn đúng với mọi x và y )

Vậy BĐT trên đúng. Dấu ' = ' xảy ra khi x, y cùng dấu

b, Áp dụng từ câu a , bạn suy ra nhé !

31 tháng 5 2017

a) cả 2 vế không âm nên bình phương 2 vế ta được :

\(\left|x+y\right|^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right).\left(\left|x\right|+\left|y\right|\right)\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2.\left|x\right|\left|y\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) Điều này luôn đúng với mọi số x ; y .

Vậy bất đẳng thức đã cho đúng . Dầu " ="khí | xý | = xy <=> x ; y cùng dấu .

b) Áp dụng câu a) ta có : | x - y| + |y| \(\ge\) | (x-y) + y | = |x|

=> |x - y | \(\ge\)|x| + | y|

Đầu " = " xảy ra <=> (x-y) và y cùng dấu

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5