Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Vì 2001<2009 nên \(\frac{2001}{2010}< \frac{2009}{2010}\)
b)
Ta có: \(\frac{11}{12}=1-\frac{1}{12}\)
\(\frac{13}{14}=1-\frac{1}{14}\)
Vì \(\frac{1}{12}>\frac{1}{14}\) nên \(\frac{11}{12}< \frac{13}{14}\)
c)
Ta có: \(\frac{157}{369}< \frac{157}{357}< \frac{169}{357}\)
d)
Ta có: \(\frac{37}{53}< \frac{37}{50}< \frac{39}{50}\)
e)
Ta có:\(\frac{2018}{2015}=1+\frac{3}{2015}\)
\(\frac{2014}{2009}=1+\frac{5}{2009}\)
Vì \(\frac{3}{2015}< \frac{3}{2009}< \frac{5}{2009}\)nên \(\frac{2018}{2015}< \frac{2014}{2009}\)
g)
Ta có: \(\frac{54}{29}=1+\frac{25}{29} ;\frac{ 78}{53}=1+\frac{25}{53}\)
Vì \(\frac{25}{29}>\frac{25}{53}\) nên \(\frac{54}{29}>\frac{78}{53}\)
#)Giải :
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)
\(=0\)
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)
=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)
\(=0\)
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
Mình làm hơi lâu! bạn thông cảm
Chúc bạn hok tốt nha!@
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
\((2,5\cdot x+2017)\cdot2018=(7,5+2017)\cdot2018\)
\(\Rightarrow(2,5\cdot x+2017)\cdot2018=4085441\)
\(\Rightarrow2,5\cdot x+2017=2024,5\)
\(\Rightarrow2,5x=7,5\)
\(\Rightarrow x=7,5:2,5=3\)
\(3\frac{1}{5}+\frac{2}{5}\left[x+\frac{1}{3}\right]=\frac{21}{5}\)
\(\Rightarrow\frac{16}{5}+\frac{2}{5}\left[x+\frac{1}{3}\right]=\frac{21}{5}\)
\(\Rightarrow\frac{2}{5}\left[x+\frac{1}{3}\right]=\frac{21}{5}-\frac{16}{5}\)
\(\Rightarrow\frac{2}{5}\left[x+\frac{1}{3}\right]=1\)
\(\Rightarrow x+\frac{1}{3}=\frac{5}{2}\)
\(\Rightarrow x=\frac{13}{6}\)
(52/51) x (53/52) x (54/53) x ....x (2017/2016) x (2018/2017)
=(52 x 53x 54x ...x 2017 x 2018)/(51x 52x 53x ...x2016x 2017)
=2018/51
\(P = (\frac{2}{2} \times\frac{1}{1+2}) + ( \frac{2}{2} \times \frac{1}{1+2+3})+...+(\frac{2}{2} \times \frac{1}{1+2+..+2018}) \) ( Phép tính sẽ không bị thay đổi kết quả vì 2/2 vốn bằng 1)
\(P = \frac{2}{2\times (1+2)} + \frac{2}{2\times (1+2+3)}+...+ \frac{2}{2 \times (1+2+..+2018)}\)
\(P = \frac{2}{6} + \frac{2}{12}+..+\frac{2}{4076361}\)
\(P=\frac{1}{2\times3} + \frac{1}{3\times 4}+..+\frac{1}{1018\times 1019}\)
\(P = \frac{1}{2} - \frac{1}{3} + \frac{1}{3}-\frac{1}{4}+\frac{1}{4} - ...- \frac{1}{1018} + \frac{1}{1018} -\frac{1}{1019} \)
\(P = \frac{1}{2} - \frac{1}{1019} = \frac{2017}{2038}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung