K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Vì \(\left(3x-5\right)^{2006}\ge0\) ; \(\left(y^2-1\right)^{2008}\ge0\) ; \(\left(x-z\right)^{2100}\ge0\)

\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\z=\frac{5}{3}\end{cases}}\)<=> x = z = 5/3 và y = 1 hoặc y = -1

Vậy....

17 tháng 8 2019

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Ta có:

\(\hept{\begin{cases}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{cases}}\)

\(\Leftrightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

Dấu "=" xảy ra:

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

Vây khi x = \(\frac{5}{3}\); y = \(\pm1\), z = \(\frac{5}{3}\)thì biểu thức trên có giá trị bằng 0.

Chúc em học tốt nhé!!!

27 tháng 7 2019

no slt

27 tháng 7 2019

Ta có: (3x - 5)2006 ≥ 0 \(\forall\)x

           (y2 - 1)2008 ≥ 0 \(\forall\)y

           (x - z)2100 ≥ 0 \(\forall\)x, z

=> (3x - 5)2006 + (y2 - 1)2008 + (x - z)2100 ≥ 0 \(\forall\)x, y, z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}\Rightarrow}\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\x=z=\frac{5}{3}\end{cases}}}\)

Giải y2 = 1 => y = 1 hoặc y = -1

           

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

1 tháng 5 2017

Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x

           \(\left(y^2-1\right)^{2008}\ge0\)với mọi y

           \(\left(x-z\right)^{2100}\ge0\) với mọi x,z

\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x

Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)

Xét:

\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)

Xét:

\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)

Xét:

\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

1 tháng 5 2017

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)

11 tháng 2 2016

\(\left(3x-5\right)^{2006}\ge0;\left(y^2-1\right)^{2008}\ge0;\left(x-z\right)^{2100}\ge0\) với mọi x,y,z

mà theo đề:......=0

\(\Rightarrow\left(3x-5\right)^{2006}=0\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)

\(y^2-1=0\Rightarrow y^2=1\Rightarrow y\in\left\{-1;1\right\}\)

\(\left(x-z\right)^{2100}=0\Rightarrow x-z=0\Rightarrow x=z\Rightarrow z=\frac{5}{3}\)

vậy...
 

27 tháng 10 2017

Ta có:

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\pm1\\z=\dfrac{5}{3}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

18 tháng 2 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{116}{29}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=4.4=16\Leftrightarrow x=4\\y^2=4.9=36\Leftrightarrow y=6\\z^2=4.16=64\Leftrightarrow z=8\end{cases}}\)

18 tháng 2 2019

a) Vì \(\left(3x-5\right)^{2006}\ge0\forall x;\left(y-1\right)^{2008}\ge\forall y;\left(x-z\right)^{2100}\ge0\forall x;z\)

Nên \(\left(3x-5\right)^{2006}+\left(y-1\right)^{2008}+\left(x-z\right)^{2100}=0\Leftrightarrow\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\). Vậy x = 5/3; y = 1; z = 5/3

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\)

Áp dụng t/s dãy tỉ số bằng nhau : \(k=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\) ( vì x2+y2+z2=116) 

Do đó : \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=\pm4\)

\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=\pm6\) và \(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow z=\pm8\)

Vậy  các cặp (x;y;z) cần tìm là : x=4, y=6, z=8  và x= -4,y= -6,z= -8

22 tháng 3 2019

Ta có

(x -1)^2016 >0; (2y-1)^2016>0;  /x+2y-z/^2017>0

Mà tổng ba số trên bằng 0

=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0

=>x=1; y=1/2; z= 2

1 tháng 12 2019

Các bạn và giáo viện giúp ạ

21 tháng 3 2020

cậu nhờ giáo viên giúp đi