Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)
\(3a,\frac{2n+15}{n+1}\) là số nguyên
\(\Leftrightarrow2n+15⋮n+1\)
\(\Leftrightarrow2n+2+13⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+13⋮n+1\)
\(\Leftrightarrow13⋮n+1\) ( vì \(2\left(n+1\right)⋮n+1\)và \(\left(n+1\right)\inℤ\) )
\(\Leftrightarrow n+1\inƯ\left(13\right)\left\{\pm1;\pm13\right\}\)
Đến đây bn lập bảng xét để tìm n.
mn vô đây xem thằng Phạm Việt Đức chửi tớ nek
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath