K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

a) Xét tứ giác ABCD, có:

AC và BD là 2 đường chéo cắt nhau tại M

M là trung điểm AC (gt)

M là trung điểm BD (BF= DE - gt)

=> tứ giác ABCD là hình bình hành

Xét tg ABC và tg CDA có:

AB = CD (2 cạnh bên hình bình hành)

góc BAC = góc ACD (so le trong của AB//DC - 2 cạnh hình bình hành)

AC là cạnh chung

=> tg ABC = tg CDA (đpcm)

b) xét tg ABF và tg CDE, có:

AB = DC (2 cạnh bên hình bình hành)

góc ABF = góc ADC (2 góc đối hình bình hành bằng nhau)

BF = DE (gt)

=> tg ABF = tg CDE (c-g-c)

=> góc DEC = góc AFB (2 góc tương ứng)

mà góc DEC = 90 độ (CE vuông góc AD - gt)

=> góc AFB = 90 độ

=> AF vuông góc với BC (gt)

c) ta có: AD // BC (2 cạnh hình bình hành)

=> góc DEC = góc ECB (so le trong)

=> góc DEC = góc ECB = 90 độ

xét tứ giác AECF có:

góc AEC = góc ECF = góc AFC = 90 độ

=> tứ giác AECF là hình chữ nhật

có AC và EF là 2 đường chéo

mà 2 đường chéo hình chữ nhật cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm AC (gt)

=> M cũng là giao điểm 2 đường chéo hình chữ nhật

=> M là trung điểm EF

=> M,E,F thẳng hàng (đpcm)

9 tháng 4 2018

Áp dụng định lý Pytago ta có:

AB2+AC2=BC2

=>BC2=32+42=25

=>BC=\(\sqrt{25}\)=5

b)Xét tam giác ADM và tam giác CDM có:

BM=DM(gt)

góc AMD= góc CMD(đối đỉnh)

MA=MC(gt)

=>tam giác ABM = tam giác CDM(c.g.c)

=>góc BAM= góc DCM =90o

=>DC là  vuông góc với AC

9 tháng 4 2018

mình cần câu c, d 

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

d: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

27 tháng 2 2018

a)  Áp dunhj định lý Py-ta-go vào  tam giác vuông  ABC  ta có:

                    AB2 + AC2 = BC2

            \(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)

           \(\Leftrightarrow\)\(BC=\sqrt{25}=5\)

b)  Xét tam giác ABM  và   tam giác CDM  có:

           BM  =  DM  (gt)

           góc AMB  =  góc CMD   (dđ)

           MA  =  MC    (gt)

suy ra:  tam giác  ABM  =  tam giác CDM   (c.g.c)

suy ra:   góc BAM  =  góc DCM  =  900

suy ra:  DC  vuông góc với  AC

27 tháng 2 2018
Bạn ơi mình cần câu "c" với câu "d" nữa chỉ mình đi