Cho nửa đường tròn (O;R) đường kình AB, M là điểm trên nửa đường tròn, tiếp tuyến...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Kẻ OC và OD

a)Ta có: AC và CM là tiếp tuyến của đường tròn (O), cắt nhau tại C

=>CM=AC (1)  , OC là phân giác của ∠AOM ⇔ ∠AOC= ∠MOC

Lại có:  BD và MD là 2 tiếp tuyến của đường tròn (O), cắt nhau tại D

=> BD=MD(2)  , OD là tia phân giác của ∠BOM ⇔ ∠BOD =∠MOD

Vì ∠AOC+∠COM+∠MOD+∠DOB=∠AOB=180O

Mà ∠AOC=∠COM, ∠MOD=∠DOB

Nên ∠AOC+∠COM+∠MOD+∠DOB=180o

   ⇔ 2∠COM+ 2∠MOD=180o

   ⇔  2(∠COM+ ∠MOD)=180o

   ⇔ ∠COM+ ∠MOD=\(\dfrac{180^0}{2}\)=90o

Vì ∠COD=∠COM+ ∠MOD mà ∠COM+ ∠MOD=90o nên ∠COD=90o =>△COD là tam giác vuông(3)

Từ (1),(2) (3), suy ra:

Trong △COD,có:   CD=CM+MD =AC+BD

Vậy CD=AC+BD (đpcm)

 

b) Lấy I là trung điểm của CD (I ∈ CD) và kẻ OI

Ta có: △COD là tam giác vuông

 Và OI ứng với cạnh huyền CD=> IO=\(\dfrac{CD}{2}\)

=> IO=CI=ID (1) 

Vì AC⊥AB⊥BD nên AC song song với BD

=> ACDB là hình thang vuông(1)

Lại có: I là trung điểm của CD và O là trung điểm của AB

=>OI là đường trung bình của hình thang ACDB(2)

Từ (1) và (2),  suy ra: IO ⊥AB

=> AB là tiếp tuyến của đường tòn đường kính CD (đpcm)

 

 

10 tháng 12 2020

O A B M D C I

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Ta có: CM+DM=CD

nên CD=CA+DB

b: Từ (1) và (2) suy ra \(\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=90^0\)

=>\(\widehat{COD}=90^0\)

hay ΔCOD vuông tại O

18 tháng 12 2020

a) Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DM=DB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CM+MD=CD(M nằm giữa C và D)

mà CM=CA(cmt)

mà DM=DB(cmt)

nên AC+BD=CD(đpcm)

b) Gọi G là tâm của đường tròn đường kính CD

Xét (G) có CD là đường kính

nên G là trung điểm của CD

Ta có: AC⊥AB(AC là tiếp tuyến của (O))

BD⊥BA(BD là tiếp tuyến của (O))

Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)

Xét tứ giác ACDB có AC//DB(cmt)

nên ACDB là hình thang có hai đáy là AC và DB(Định nghĩa hình thang)

Xét (O) có AB là đường kính

nên O là trung điểm của AB

Hình thang ACDB(AC//DB) có 

G là trung điểm của cạnh bên CD(cmt)

O là trung điểm của cạnh bên AB(cmt)

Do đó: GO là đường trung bình của hình thang ACDB(Định nghĩa đường trung bình của hình thang)

⇒GO//AC//BD và \(GO=\dfrac{AC+BD}{2}\)(Định lí 4 về đường trung bình của hình thang)

Ta có: GO//AC(cmt)

AC⊥AB(AC là tiếp tuyến của (O))

Do đó: GO⊥AB(Định lí 2 từ vuông góc tới song song)

hay GO⊥OA

Xét (O) có 

CA là tiếp tuyến có A là tiếp điểm(gt)

CM là tiếp tuyến có M là tiếp điểm(gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{AOM}\)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{DOM}=\dfrac{1}{2}\cdot\widehat{MOB}\)

Ta có: \(\widehat{COM}+\widehat{DOM}=\widehat{COD}\)(tia OM nằm giữa hai tia OC và OD)

hay \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

mà OG là đường trung tuyến ứng với cạnh huyền CD(G là trung điểm của CD)

nên \(OG=\dfrac{CD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CG=\dfrac{CD}{2}\)(G là trung điểm của CD)

nên OG=CG

⇔OG=R'

hay O∈(G)

Xét (G) có 

O∈(G)

AO⊥GO tại O(cmt)

Do đó: AO là tiếp tuyến của (G)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

⇔AB là tiếp tuyến của đường tròn có đường kính CD(đpcm)

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400a) Tính góc AOBb) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cânBài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba...
Đọc tiếp

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400

a) Tính góc AOB

b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân

Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D

a) chứng minh : Tam giác COD là tam giác vuông

b)Chứng minh : MC.MD=OM2

c) Cho biết OC=BA=2R, tính AC và BD theo R

Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N

a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP

b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân

1

Bài 2:

a: Xét (O) có

CM,CA là tiếp tuyến

nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b:

Xét ΔCOD vuông tại O có OM là đường cao

nên MC*MD=OM^2

c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)