Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải: Ta có: -n2+ 3n – 7 = -n.(n + 2) + 5n – 7 = -n(n + 2) + 5.(n + 2) -17 Để -n2+ 3n -7 chia hết cho n+2 thì 17 ⋮ n + 2 => n + 2 ∈ Ư(17) = {-17; -1; 1; 17} => n ∈ {-19; -3; -1; 15}. Kết luận: n ∈ {-19; -3; -1; 15}.
b)
a có:
n+3 2n-2
2(n+3) 2n-2
2n+6 2n-2
2n+(8-2) 2n-2
2n+8-2 2n-2
(2n-2)+8 2n-2
Vì 2n-2 2n-2
Nên để (2n-2)+8 2n-2 thì:
8 2n-2
⇒ (2n-2) Ư(8)={1; 2; 4; 8}
¤ Nếu: 2n-2=1
2n =1+2
2n =3
n =
¤ Nếu: 2n-2=2
2n =2+2
2n =4
n =4:2
n =2
¤ Nếu: 2n-2=4
2n =4+2
2n =6
n =6:2
n =3
¤ Nếu: 2n-2=8
2n =8+2
2n =10
n =10:2
n =5
Vậy: n {2; 3; 5}
Bài 1:
\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)
\(2009.2009^{10}=\left(10001.2009\right)^{10}\)
Ta thấy:
\(2009< 10001\Rightarrow2009.2009< 1001.2009\)
\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)
\(\Rightarrow2009^{20}< 20092009^{10}\)
Bài 3:
a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)
\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)
\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số
\(\Rightarrow\left(x;y\right)\in\varnothing\)
c) \(x+y+9=xy-7\)
\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)
\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)
Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)
+) Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)
+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)
+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)
+) Nếu \(x=18\Rightarrow y=2\)
Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)
Bài 4:
n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1
\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1
Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)
=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)
\(\Rightarrow n⋮2\)(n chẵn)
Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)
=> x12.x22....xn2=1>0
=> Số thừa số -1 là số chẵn
=>n/2 chẵn
=> n chia hết cho 4(đpcm)
Bài 6:
Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)
Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)
do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)
Bài 7:
Gợi ý: Đặt x=111.1( n chữ số 1)
Ta có: 10n=9x+1
=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x
Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2
Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...
Bài 9:
- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:
\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)
Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)
\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)
\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)
\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)
- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:
a+1;a+2;...;b-2;b-1
Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)
\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)
\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)
Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)
Bài 10:
Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:
\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)
Vậy A là số chính phương
Ta có :
\(A+B+C\Rightarrow4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2=6x^2+6y^2\)
\(B-C-A\Rightarrow3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2=4xy-4y^2\)
\(C-A-B\Rightarrow-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2=-8x^2+6xy-2y^2\)
Câu 1: Cho tam giác ABC, góc A = 640, góc B = 800. Tia phân giác góc BAC cắt BC tại D.
Số đo của góc là bao nhiêu?
A. 70o B. 102o C. 88o D. 68o
Câu 2: Đơn thức -1/2 xy2 đồng dạng với:
A. -1/2 x2y B. x2y2 C. xy2 D. -1/2 xy
Câu 3: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:
A. 3√3 cm B. 3 cm C. 3√2 cm D. 6√3 cm
Câu 4: Tìm n ϵ N, biết 3n.2n = 216, kết quả là:
A. n = 6 B. n = 4 C. n = 2 D. n = 3
Câu 5: Xét các khẳng định sau. Tìm khẳng định đúng. Ba đường trung trực của một tam giác đồng qui tại một điểm gọi là:
A. Trọng tâm của tam giác B. Tâm đường tròn ngoại tiếp
C. Trực tâm của tam giác D. Tâm đường tròn nội tiếp
Câu 6: Cho tam giác ABC có gó A = 500; góc B : góc C = 2 : 3. Bất đẳng thức nào sau đây đúng?
A. AC < AB < BC B. BC < AC < AB C. AC < BC < AB D. BC < AB < AC
Câu 7: Cho điểm P (-4; 2). Điểm Q đối xứng với điểm P qua trục hoành có tọa độ là:
A. Q(4; 2) B. Q(-4; 2) C. Q(2; -4) D. Q(-4; -2)
Câu 8: Xét các khẳng định sau, tìm khẳng định đúng. Trong một tam giác giao điểm của ba trung tuyến gọi là:
A. Trọng tâm tam giác B. Trực tâm tam giác
C. Tâm đường tròn ngoại tiếp tam giác D. Tâm đường tròn nội tiếp tam giác
Câu 9: P(x) = x2 - x3 + x4 và Q(x) = -2x2 + x3 – x4 + 1 và R(x) = -x3 + x2 +2x4.
P(x) + R(x) là đa thức:
A. 3x4 + 2x2 B. 3x4 C. -2x3 + 2x2 D. 3x4 - 2x3 + 2x2
Câu 10: Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác. Độ dài trung tuyến AM là:
A. 8cm B. √54cm C. √44cm D. 6cm
S1 =1+2+2^2+2^3+………………..+2^62+2^63
2S =2 (1+2+2^2+2^3+……………..+2^62+2^63)
2S =2+2^2+2^3+2^4+……………………….+2^63+2^64
2S-S = (2+2^2+2^3+2^4+……………….+2^63+2^64 ) – (1+2+2^2+2^3+…………………+2^62+2^63)
S1= 2^64-1
HT
Bài này có thể giải bằng hai cách nhé!
Cách 1:
Ta thấy: S1 = 1 + 2 + 22 + 23 + … + 263 (1)
2S1 = 2 + 22 + 23 + … + 263 + 264 (2)
Trừ từng vế của (2) cho (1) ta có:
2S1 - S1 = 2 + 22 + 23 + … + 263 + 264 - (1 + 2 + 22 + 23 + … + 263)
= 264 - 1. Hay S1 = 264 - 1
Cách 2:
Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)
= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1
~ Hc tốt!!!
Ta có A + B + C = 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2
= 6x2 + 6y2
B - C - A = 3x2 + 2xy + y2 - (x2 + 3xy + 2y2) - (4x2 - 5xy + 3y2)
= 3x2 + 2xy + y2 - x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2
= -2x2 + 4xy - 4y2
C - A - B = x2 + 3xy + 2y2 - (4x2 - 5xy + 3y2) - (3x2 + 2xy + y2)
= x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2
= -6x2 + 6xy - 2y2
Trả lời:
A = 4x2 - 5xy + 3y2
B = 3x2 + 2xy + y2
C = - x2 + 3xy + 2y2
=> A + B + C = 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 + ( - x2 + 3xy + 2y2 )
= 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2
= 6x2 + 6y2
=> B - C - A = 3x2 + 2xy + y2 - ( - x2 + 3xy + 2y2 ) - ( 4x2 - 5xy + 3y2 )
= 3x2 + 2xy + y2 + x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2
= 4xy - 4y2
=> C - A - B = - x2 + 3xy + 2y2 - ( 4x2 - 5xy + 3y2 ) - ( 3x2 + 2xy + y2 )
= - x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2
= - 8x2 + 6xy - 2y2
a) \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b) \(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-x^5+2x^4-2x^3+3x^2-x+4\)
\(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
Lại có: \(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
c) Giả sử \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6=0\)
\(\Rightarrow A\left(x\right)=5x^5+5x^4-9x^4-9x^3+7x^3+7x^2-3x^2-3x+6x+6=0\)
\(\Rightarrow A\left(x\right)=5x^4\left(x+1\right)-9x^3\left(x+1\right)+7x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow A\left(x\right)=\left(x+1\right)\left(5x^4-9x^3+7x^2-3x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\5x^4-9x^3+7x^2-3x+6=0\end{cases}}\Rightarrow x=-1\)
Vậy x = -1 là một nghiệm của A(x)
Thay x = -1 vào B(x), nếu kết quả khác 0 thì đó không phải là nghiệm của B(x)
D=1212+2222+3232+....+ n2n2
D=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)
D=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n
D= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )
D= n(n+1)2n(n+1)2 + n(n+1)(n−1)3n(n+1)(n−1)3
D= 3n(n+1)+2n(n+1)(n−1)63n(n+1)+2n(n+1)(n−1)6
D= n(n+1)(2n+1)6