K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

giúp mình với bucminh

 

 

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

hay \(n\in\left\{0;8;-8\right\}\)

13 tháng 2 2020

Đề sai nhé, phải là :

\(3^{2n+1}+2^{n+2}⋮7\)

Ta có :  \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)

\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)

Do đó : \(9^n.3+2^n.4⋮7\)

hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )

22 tháng 6 2018

\(A=1+3+3^2+...+3^{10}\)

\(3A=3+3^2+...+3^{11}\) 

\(3A-A=3^{11}-1\)

\(2A=3^{11}-1\) 

\(2A+1=3^{11}\)

................

\(\text{A = 1 + 3 + 32 + ... + 310 3A = 3 + 32 + ... + 311 3A − A = 311 − 1 2A = 311 − 1 2A + 1 = 311 .}\)

4 tháng 8 2019

a, Ta có : n2 + 5n + 9 \(⋮\)n + 5

         = n (n + 5) + 9 \(⋮\)n + 5

    Vì n (n + 5) \(⋮\)n + 5 => 9 \(⋮\)n + 5

=> n + 5 \(\in\)Ư(9) = {\(\pm\)1 ; \(\pm\)3\(\pm\)9 }

Ta lập bảng :

n+51-13-39-9
n-4-6-2-84-14

Vậy ...................................................

Thấy đúng thì t.i.c.k đúng cho mik nhé !

5 tháng 8 2019

a) \(n^2+n-17⋮n+5\)

\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)

Mà \(n\left(n+5\right)⋮n+5\)

\(\Rightarrow4n+17⋮n+5\)

\(\Rightarrow4\left(n+5\right)-3⋮n+5\)

mà \(4\left(n+5\right)⋮n+5\)

\(\Rightarrow3⋮n+5\)

\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lamf noots

5 tháng 8 2019

b)\(n^2+3n-5⋮n-2\)

\(\Leftrightarrow n^2+2n+n-5⋮n-2\)

\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)

Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(n\)\(1\)\(-1\)\(3\)\(-3\)
\(n-2\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10