Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé, phải là :
\(3^{2n+1}+2^{n+2}⋮7\)
Ta có : \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)
Do đó : \(9^n.3+2^n.4⋮7\)
hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )
\(A=1+3+3^2+...+3^{10}\)
\(3A=3+3^2+...+3^{11}\)
\(3A-A=3^{11}-1\)
\(2A=3^{11}-1\)
\(2A+1=3^{11}\)
................
\(\text{A = 1 + 3 + 32 + ... + 310 3A = 3 + 32 + ... + 311 3A − A = 311 − 1 2A = 311 − 1 2A + 1 = 311 .}\)
a, Ta có : n2 + 5n + 9 \(⋮\)n + 5
= n (n + 5) + 9 \(⋮\)n + 5
Vì n (n + 5) \(⋮\)n + 5 => 9 \(⋮\)n + 5
=> n + 5 \(\in\)Ư(9) = {\(\pm\)1 ; \(\pm\)3\(\pm\)9 }
Ta lập bảng :
n+5 | 1 | -1 | 3 | -3 | 9 | -9 |
n | -4 | -6 | -2 | -8 | 4 | -14 |
Vậy ...................................................
Thấy đúng thì t.i.c.k đúng cho mik nhé !
a) \(n^2+n-17⋮n+5\)
\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)
Mà \(n\left(n+5\right)⋮n+5\)
\(\Rightarrow4n+17⋮n+5\)
\(\Rightarrow4\left(n+5\right)-3⋮n+5\)
mà \(4\left(n+5\right)⋮n+5\)
\(\Rightarrow3⋮n+5\)
\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lamf noots
b)\(n^2+3n-5⋮n-2\)
\(\Leftrightarrow n^2+2n+n-5⋮n-2\)
\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)
Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(n\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n-2\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
giúp mình với
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
hay \(n\in\left\{0;8;-8\right\}\)