Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Với p = 2 thì p4 + 2 = 24 + 2 = 18 là hợp số ( loại )
* Với p = 3 thì p4 + 2 = 34 + 2 = 83 là số nguyên tố ( thỏa mãn )
* Với p > 3: p là số nguyên tố
=> p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).
+) p = 3k + 1: Ta có: p4 + 2 = ( 3k + 1 )4 + 2 = 3k4 + 4 + 2 = 3k4 + 6 = 3( k4 + 2 ) ⋮ 3 là hợp số (Loại)
+) p = 3k + 2: Ta có: p4 + 2 = ( 3k + 2 )4 + 2 = 3k4 + 16 + 2 = 3k4 + 18 = 3( k4 + 6 ) ⋮ 3 là hợp số (Loại).
Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.
KL: p = 3 là thỏa mãn yêu cầu bài toán.
+) Với P = 2 \(\Rightarrow p^4+2=2^4+2=16+2=18\)( không là SNT )
\(\Rightarrow p=2\)( loại )
+) Với P= 3 \(\Rightarrow p^4+2=3^4+2=81+2=83\)( là SNT )
\(\Rightarrow p=3\)( chọn )
+) Với p >3 \(\Rightarrow p\) có dạng 3k+1 ( k \(\in\)N* )
3k+2
+) Với p= 3p+1 \(\Rightarrow p^4+2=\left(3k+1\right)^4+2\)
\(=\left(9k^2+6k+1\right)^2+2\)
\(=81k^4+36k^2+1+108k^3+18k^2+12k+2\)
\(=3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)⋮3\)
Mà \(3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)>3\)
\(\Rightarrow3.\left(27k^4+12k^2+1+36k^3+6k^2+4k\right)\)là hợp số
\(\Rightarrow p=3k+1\)( loại )
+) Với \(p=3k+2\Rightarrow p^4+2=\left(3k+2\right)^4+2\)
\(=\left(9k^2+12k+4\right)^2+2\)
\(=81k^4+144k^3+16+216k^3+72k^2+96k+2\)
\(=3.\left(27k^4+48k^3+6+72k^3+32k\right)⋮3\)
Mà \(3.\left(27k^4+48k^3+6+72k^3+32k\right)>3\)
\(\Rightarrow3.\left(27k^4+48k^3+6+72k^3+32k\right)\)là hợp số
\(\Rightarrow p=3k+2\)(loại )
Vậy p=3
Số p có một trong ba dạng : 3k ; 3k + 1 ; 3k + 2 với k thuộc N*
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5 ; p + 4 = 7 đều là các số nguyên tố.
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số.
=> p = 3
vì các số nguyên tố đều là số lẻ (có số 2 là chẵn nhưng ở đây không làm cững biết là không thỏa mãn với yêu cầu đề bài rồi ) ta xét số 3
3+2=5 (là 1 số nguyên tố)
3+4=7(là 1 số nguyên tố)
vậy p=3
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố
Mà \(a+b=4+5=9\) là hợp số
\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai
b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\)
\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)
+) Nếu \(a-b>1\)
\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)
\(\Rightarrow a^2-b^2\) là hợp số
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=a+b\)
Mà \(a^2-b^2\) là số nguyên tố
\(\Rightarrow a+b\) là số nguyên tố
\(\Rightarrow\) Mệnh đề : " Nếu \(a>b\) và \(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng
Xét số dư khi P chia cho 3 thì p + 2 và p + 4 chia cho 3 có
p chia 3 dư 1 => p + 2 chia hết cho 3
p chia 3 dư 2 => p + 4 chia hết cho 3
< = > P chia hết cho 3
< = > P = 3
Số p có một trong ba dạng : 3k, 3k + 1, 3k + 2 với k E N*
Nếu p = 3k thì p = 3 ( vì p là số nguyên tố ), khi đó p + 2 = 5, p + 4 = 7 đều là các số nguyên tố.
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số, trái với đề bài.
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết chp 3 và lớn hơn 3 nên p + 4 là hợp số, trái với đề bài.
Vậy p = 3 là giá trị duy nhất phải tìm.
HT
+ Nếu p = 2 => p + 2 = 4 ∉∉ P (loại)
+ Nếu p = 3 => p + 2 = 5 ∈∈ P ; p + 4 = 7 ∈∈ P
+ Nếu p > 3 mà p là số nguyên tố nên p ⋮/⋮̸ 3 => p = 3k + 1; p = 3k + 2 (p ∈∈ N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=> Không có giá trị nguyên tố p lớn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm.