Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2100+2101+2102=2100+2100.2+2100.22=2100(1+2+22)=2100.7 chia hét cho 7
=> 2100+2101+2102 chia hết cho 7
2. 165+215=220+215=215+215.25=215.(1+25)=215.33 chia hết cho 33
=> 165+215 chiaheets cho 33
Cho biểu thức A= 2100 + 2101 + 2102 . Chứng minh rằng A chia hết cho 7 . Giúp mình giải nha , cảm ơn
2100 + 2101 + 2102
= 299[2 + 22 + 23]
= 299.[2+4+8]
= 299.14
= 299.2.7
= 2100.7 chia hết cho 7
Vậy:...........
Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
> \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)
Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)
Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
CMR:\(\frac{1}{200}< A< \frac{1}{99}\)
+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)
\(\frac{1}{101.101}>\frac{1}{101.102}\)
.............................................
\(\frac{1}{198.198}>\frac{1}{198.199}\)
\(\frac{1}{199.199}>\frac{1}{199.200}\)
=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)
=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)
=>A>\(\frac{1}{200}\)(1)
+)Ta lại có:
A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\frac{1}{101.101}< \frac{1}{100.101}\)
................................................
\(\frac{1}{198.198}< \frac{1}{197.198}\)
\(\frac{1}{199.199}< \frac{1}{198.199}\)
=>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)
=>A<\(\frac{1}{99}-\frac{1}{199}\)
Mà A<\(\frac{1}{99}-\frac{1}{199}\)
=>A<\(\frac{1}{99}\)(2)
+)Từ (1) và (2)
=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)
Vậy \(\frac{1}{200}< A< \frac{1}{99}\)
Chúc bn học tốt
Ta có A = 1/2+2/22+3/23+4/24+...+100/2100
<=> A = 1/2+2/4+3/9+4/16+...+100/2100
Bài 1 :
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
Bài 2 :
2.Chứng minh rằng
212+312+213+214+315 chia hết cho 7
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
: = chia hết à