K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

bài 1.CM với mọi số nguyên x, y 
thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4 là số chính phương 

CM : 
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4 
<=> A = (x² + 5xy + 4y²)( x² + 5xy + 6y²) + y^4 

Đặt x² + 5xy + 5y² = t ( t Є Z) 

=> A = (t - y²)( t + y²) + ^y4 
=> A = t² –y^4 + y^4 
=> A = t² 
=> A = (x² + 5xy + 5y²)² 

V ì x, y, z Є Z 
=> 
{ x² Є Z, 
{ 5xy Є Z, 
{ 5y² Є Z 

=> x² + 5xy + 5y² Є Z 

=> (x² + 5xy + 5y²)² là số chính phương. 

Vậy A là số chính phương.

bài 2 chịu

2 tháng 12 2019

may oi ko giai duoc

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#

14 tháng 10 2018

       \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)

       \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)

Chúc bạn học tốt.

27 tháng 9 2019

\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)

27 tháng 9 2019

\(49\left(y-4\right)^2-9y^2-36y-36\)

\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)

\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)

\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)

\(=\left(10y-22\right)\left(4y-34\right)\)

11 tháng 1 2020

1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)

\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)

\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)

\(=2\left(c-1\right)\left(c-2\right)+5\le5\) 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.

2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)

3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!

11 tháng 1 2020

Mình xin lỗi vì viết sai nhé, phải là:

1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR: 

22 tháng 9 2020

Bài 1.

x = 14

=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1

Thế vào N(x) ta được :

x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x

= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x

= -x = -14

Bài 2.

a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )

= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]

= ( 1 - x )2 - ( 2x3 - 3x2 )2

= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]

= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )

= x2 - 2x + 1 - 4x6 + 12x5 - 9x4

= -4x6 + 12x5 - 9x4 + x2 - 2x + 1

b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )

= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )

= [ ( x - y + z ) - ( z - y ) ]2

= ( x - y + z - z + y )2

= x2