K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

a) Hàm số y=

Tập xác định: (0; +∞).

Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.

Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.

Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).

b) y= .

Tập xác định: ℝ \{0}.

Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).

Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

Bảng biến thiên

Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.



24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

1 tháng 4 2017

a) Khi a = 0 ta có hàm số: y=−13x3−x2+3x−4y=−13x3−x2+3x−4

- Tập xác định : (-∞, +∞)

- Sự biến thiên: y’= -x2 – 2x + 3

y’=0 ⇔ x = 1, x = -3

Trên các khoảng (-∞, -3) và (1, +∞), y’ < 0 nên hàm số nghịch biến.

Trên khoảng (-3, 1), y’ > 0

_ Cực trị:

Hàm số đạt cực đại tại x = 1, yCD=−73yCD=−73

Hàm số đạt cực tiểu tại x = -3, yCT=−13yCT=−13

_ giới hạn vô cực : limx→+∞=−∞,limx→−∞=+∞limx→+∞=−∞,limx→−∞=+∞

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại y = -4

Đồ thị cắt trục hoành tại x ≈ 5, 18

b) Hàm số y=−13x3−x2+3x−4y=−13x3−x2+3x−4 đồng biến trên khoảng (-3, 1) nên:

y < y(1) = −73−73 < 0, ∀x ∈ (-1, 1)

Do đó , diện tích cần tính là:

∫1−1(−13x3−x2+3x−4)dx=263



Xem thêm tại: http://loigiaihay.com/cau-2-trang-145-sgk-giai-tich-12-c47a26419.html#ixzz4czxQ4IGx

a) TXĐ: R

📷

y’>0 trên khoảng (-∞; -2)và (0; +∞)

y'<0 trên khoảng (-2; 0)

yCĐ=y(-2)=0; yCT=y(0)=-4

📷

y”=6x+6=6(x+1)=0 <=> x = -1

Bảng xét dấu y’’

X-∞-1+∞Y’’–0+Đồ thịLồiđiểm uốn u(-1; -2)lõm

Hàm số lồi trên khoảng (-∞; -1)

Hàm số lõm trên khoảng -1; +∞)

Hàm số có 1 điểm uốn u(-1; -2)

Bảng biến thiên:

📷

Đồ thị

Đi qua điểm (1; 0) và (-3; -4)

b) Hàm số y=x3+3x2-4 có điểm uốn u(-1; -2)

Ta có: y’=3x2-4 ; y’(-1) = -3

Phương trình tiếp tuyến tại điểm uốn u(-1; -2) có dạng

y-y0=y'(x0)(x-x0)

<=> y+2=-3(x+1)

<=> y=-3x-5

Vậy phương trình tiếp tuyến tại điểm uốn là: y = -3x – 5.

📷

c) Đồ thị nhận I(-1; -2) là tâm đối xứng khi và chỉ khi:

f(x0+x)+f(x0-x)=2y0 với ∀x

<=> f(x-1)+f(-x-1)=-4 ∀x

<=> (x-1)3+3(x-1)2-4+(-1-x)3+3(-1-x)2-4 ∀x

<=> x3-3x2+3x-1+3x2-6x+3-5-3x-3x2-x3+3+6x+3x2-4=-4 ∀x

<=>-4=4 ∀x

=> I(-1; -2) là tâm đối xứng của đồ thị.

bạn vào chính câu hỏi này của bạn trong bingbe xem

22 tháng 3 2017

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

14 tháng 4 2017

Lời giải

khảo sát

TXD mọi x

y' =3x^2 -6x =3x(x-2)

y' =0 => x= 0 hoặc x=2

y'' =6x-6

y''(0) =-6 <0 hàm đạt cực đại tại x=0

y''(2) =6 >0 hàm đạt cực tiểu tại x =2

y'' =0 => x=1 hàm có điểm uốn tại x=1

hàm đi từ - vc--> +vc đi góc (III) lên (IV)

Vẽ đồ thị

Các điểm quan trọng

cực đại A(0,0)

cực tiểu B(2,-4)

uốn C(1,-2)

Các điểm phụ trọng

giao với trục hoành E(0,0); \(F\left(3;0\right)\)

Giao với trục tung: \(A\left(0,0\right)\)

Đồ thị

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

b)

nhìn vào đồ thị số y=x^3 -3x^2

Hàm số x^3 -3x^2 -m có 3 nghiệm phân biệt

khi 0<m<-4

14 tháng 4 2017

0>m<-4

sửa

\(-4< m< 0\)