Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên thì nhắc lại cái hằng đẳng thức cho bạn nào chưa học này: (a-b)2=a2-2ab+b2<=>a2+b2=(a-b)2+2ab
\(S=\dfrac{\left(1^2+2^2\right)}{1.2}+\dfrac{\left(2^2+3^2\right)}{2.3}+...+\dfrac{\left(9^2+10^2\right)}{9.10}\)
\(=\dfrac{\left(\left(1-2\right)^2+2.1.2\right)}{1.2}+\dfrac{\left(\left(2-3\right)^2+2.2.3\right)}{2.3}+...+\dfrac{\left(\left(9-10\right)^2+2.9.10\right)}{9.10}\)
\(=\dfrac{\left(\left(-1\right)^2\right)}{1.2+2}+\dfrac{\left(\left(-1\right)^2\right)}{2.3+2}+...+\dfrac{\left(\left(-1^2\right)\right)}{9.10+2}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}+2.9\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}+18\)
\(=1-\dfrac{1}{10}+18\)
\(=18,9=\dfrac{189}{10}.\)
~ K chắc là đúng đâu ~
Câu b, B=\(\dfrac{5}{1\cdot2}+\dfrac{13}{2\cdot3}+\dfrac{25}{3\cdot4}+...+\dfrac{181}{9\cdot10}\)
\(=\left(\dfrac{1}{1\cdot2}+\dfrac{4}{1\cdot2}\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{12}{2\cdot3}\right)+\left(\dfrac{1}{3\cdot4}+\dfrac{24}{3\cdot4}\right)+...+\left(\dfrac{1}{9\cdot10}+\dfrac{180}{9\cdot10}\right)\)=\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)+\left(\dfrac{4}{1\cdot2}+\dfrac{12}{2\cdot3}+...+\dfrac{180}{9\cdot10}\right)\)
=\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\)\(+\left(2+2+2+.......+2\right)\)
=\(\dfrac{1}{1}-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-......-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+\dfrac{1}{10}+\left(2\cdot9\right)\)
=\(1-\dfrac{1}{10}+18\) \(=\dfrac{9}{10}+18\)
=18.9
a, \(\dfrac{\dfrac{3}{2}-\dfrac{2}{5}+\dfrac{1}{10}}{\dfrac{3}{2}-\dfrac{2}{3}+\dfrac{1}{12}}=\dfrac{\dfrac{15}{10}-\dfrac{4}{10}+\dfrac{1}{10}}{\dfrac{18}{12}-\dfrac{8}{12}+\dfrac{1}{12}}=\dfrac{\dfrac{15-4+1}{10}}{\dfrac{18-8+1}{12}}=\dfrac{\dfrac{12}{10}}{\dfrac{11}{12}}=\dfrac{72}{55}\)
\(\frac{5}{1.2}+\frac{13}{2.3}+\frac{25}{3.4}+\frac{41}{4.5}+...+\frac{181}{9.10}\) \(=\frac{4+1}{2}+\frac{12+1}{6}+\frac{24+1}{12}+\frac{40+1}{20}+...+\frac{180+1}{90}\)
\(=2+\frac{1}{1.2}+2+\frac{1}{2.3}+2+\frac{1}{3.4}+2+\frac{1}{4.5}+...+2+\frac{1}{9.10}\)
\(=18+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=19-\frac{1}{10}\)
\(=\frac{189}{10}\)
đặt \(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)
ta có:
\(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)
\(\Leftrightarrow M=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}\) \(\Leftrightarrow M=\dfrac{3}{3.4}+\dfrac{4}{3.4}-\dfrac{4}{4.5}-\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{6}{5.6}-\dfrac{6}{6.7}-\dfrac{7}{6.7}+\dfrac{7}{7.8}+\dfrac{8}{7.8}-\dfrac{8}{8.9}-\dfrac{9}{8.9}+\dfrac{9}{9.10}+\dfrac{10}{9.10}\) \(\Rightarrow M=\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}+\dfrac{1}{10}+\dfrac{1}{9}\) \(\Rightarrow M=\dfrac{1}{3}+\dfrac{1}{10}\)
\(\Rightarrow M=\dfrac{10}{30}+\dfrac{3}{30}\)
\(\Rightarrow M=\dfrac{13}{30}\)
vậy M = \(\dfrac{13}{30}\)
vậy \(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{13}{30}\)
\(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{9.10}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(A=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(B=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(B=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-.....+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\)\(B=0-1=-1\)
Bài 1:
a: \(=17+\dfrac{2}{31}-\dfrac{15}{17}-6-\dfrac{2}{31}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
b: \(=31+\dfrac{6}{13}+5+\dfrac{9}{41}-36-\dfrac{9}{41}-36-\dfrac{6}{13}\)
=36
c: \(=27+\dfrac{51}{59}-7-\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(S=\dfrac{5}{1.2}+\dfrac{13}{2.3}+\dfrac{25}{3.4}+\dfrac{41}{4.5}+...+\dfrac{181}{9.10}\)
\(S=\dfrac{\left(1^2+2^2\right)}{1.2}+\dfrac{\left(2^2+3^2\right)}{2.3}+...+\dfrac{\left(9^2+10^2\right)}{9.10}\)
\(S=\dfrac{\left\{\left(1-2\right)^2+2.1.2\right\}}{1.2}+\dfrac{\left\{\left(2-3\right)^2+2.2.3\right\}}{2.3}+...+\dfrac{\left\{\left(9-10\right)^2+2.9.10\right\}}{9.10}\)
\(S=\dfrac{\left\{\left(-1\right)^2\right\}}{1.2+2}+\dfrac{\left\{\left(-1\right)^2\right\}}{2.3+2}+...+\dfrac{\left\{\left(-1\right)^2\right\}}{9.10+2}\)
\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}+2.9\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}+18\)
\(S=1-\dfrac{1}{10}+18\)
\(S=\dfrac{189}{10}\)
Có sai thì đừng ném đá nha tội mình ~~