\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)duoc bieu dien duoi dang tong cua 3 can thu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Vậy a+b+c=14

2 tháng 3 2017

14

5 tháng 2 2017

\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)

\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)

\(\Rightarrow a+b+c=2+5+7=14\)

2 tháng 3 2017

Ta có

\(P=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)

\(\Leftrightarrow P=\sqrt{\left(\sqrt{5}+\sqrt{2}+\sqrt{7}\right)^2}\)

\(\Leftrightarrow P=\sqrt{5}+\sqrt{2}+\sqrt{7}\)

\(P=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{5}+\sqrt{2}+\sqrt{7}\)

Suy ra \(a+b+c=5+2+7=14\)

18 tháng 7 2017

1)

a)

\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)

\(A=3-\sqrt{2}+3+\sqrt{2}=6\)

b)

\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)

\(B=\sqrt{44}=2\sqrt{11}\)

24 tháng 9 2018

a.x>0

b.x>0

c.x>4

d.x>-3.5

25 tháng 9 2018

1)

a) Để biểu thức \(\sqrt{\dfrac{x}{3}}\)có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để biểu thức \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để biểu thức\(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để biểu thức \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow3x\ge-7\Leftrightarrow x\ge\dfrac{-7}{3}\)

2)

a) Để biểu thức \(\sqrt{2x+7}\) có nghĩa thì \(2x+7\ge0\Leftrightarrow2x\ge-7\Leftrightarrow x\ge\dfrac{-7}{2}\)

b) Để biểu thức \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

c) Để biểu thức \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\dfrac{1}{-1+x}>0\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

Bài 2: 

a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)

\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)

b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Bài 1:

$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$

=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$

$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$

$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$

$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$

\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$

\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)

\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)

b)

\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)

\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)

\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)

\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)