\(y=\frac{\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+...+\frac{1}{4000}}{\frac{1}{2}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

Đặt A=\(\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+........+\frac{1}{4000}\)

A=\(1+\left(1+\frac{3999}{2}\right)+\left(1+\frac{3998}{3}\right)+........+\left(1+\frac{1}{4000}\right)\)

A=\(\frac{4001}{4001}+\frac{4001}{2}+\frac{4001}{3}+...........+\frac{4001}{4000}\)

A=\(4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4000}+\frac{1}{4001}\right)\)

=>\(y=\frac{4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4001}\right)}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{4001}}\)

=>\(y=4001\)

13 tháng 4 2018

ai biết ko 1phần3+5phần8-7phần12

Bỏ 1/3 ở cuối nhé

28 tháng 4 2019

Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400

        = 2001/2+2001/3+...+2001/1999+402

        =2001.(1/2+1/3+...+1/1999)+402(1)

      Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)

19 tháng 4 2019

A=[(3999/2+1)+(3998/3+1)+...+(1/4000+1)+1]/(1/2+1/3+...+1/4001)

A=(4001/2+4001/3+...+4001/4001)/(1/2+1/3+...+1/4001)

A=[4001(1/2+1/3+...+1/4001)]/(1/2+1/3+...+1/4001)

A=4001

Vậy A=4001

tung từng vế một thôi

bạn nhác quá éo chịu suy nghĩ

bài này dễ vl

13 tháng 5 2017

Bài 1:

a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)

\(\frac{1}{5x+6}=\frac{1}{2011}\)

=> 5x + 6 = 2011

    5x = 2011 - 6

    5x = 2005

    x = 2005 : 5

    x = 401

b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)

\(\frac{7}{x}=\frac{7}{15}\)

=> x = 15

c, ghi lại đề

d, ghi lại đề

Bài 2:

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

30 tháng 4 2019

c) \(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{3}{2};3\right\}\)

e) \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)

\(\Leftrightarrow2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}:2=\frac{7}{4}.\frac{1}{2}=\frac{7}{8}\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\left(-\frac{7}{8}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)

30 tháng 4 2019

Mấy bài này ko quá khó, tải MathPhoto trong đt về nó tự lm

9 tháng 3 2019

Bài 1:

\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

\(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

......????

15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha

1 tháng 6 2017

Bài 1: 

\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\) 

\(=\frac{1}{\frac{1}{2}}+3\)  \(=2+3\) \(=5\)

                                                  Vậy B=5

Bài 2:

a) x3 - 36x = 0  

=>  x(x2-36)=0

=>  x(x2+6x-6x-36)=0 

=> x[x(x+6)-6(x+6) ]=0

=> x(x+6)(x-6)=0

\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)

 \(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)

                                  Vậy x=0; x=-6; x=6

b)  (x - y = 4 => x=4+y)

 x−3y−2 =32  

=>2(x-3) = 3(y-2)

=>2x-6= 3y-6

=>2x-3y=0

=>2(4+y)-3y=0

=>8+2y-3y=0

=>8-y=0

=>y=8 (thỏa mãn)

Do đó x=4+y=4+8=12 (thỏa mãn)

         Vậy x=12 và y =8

1 tháng 6 2017

B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4  1/5 - 1/8 

B= 1/ 1/2 + 3

B= 2+3

B=5

B2:

a) x^3 - 36x = 0

x(x^2 - 36) = 0

=> x=0  hoặc x^2-36=0

=> x= 0 hoặc x^2=36

=> x=0 hoặc x= +- 6