Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\)) Giải:
\(A=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5.\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}=\frac{1}{5}\)
\(b\)) Giải:
\(B=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right).132}{\left(\frac{5}{12}+1-\frac{7}{11}\right).132}=\frac{88-33+60}{55+132-84}=\frac{115}{103}\)
b) \(\frac{4}{10}+\frac{-2}{9}+\frac{-3}{-5}+\frac{21}{-27}+\frac{-10}{20}\)
\(=\frac{2}{5}-\frac{2}{9}+\frac{3}{5}-\frac{7}{9}-\frac{1}{2}\)
\(=\left(\frac{2}{5}+\frac{3}{5}\right)-\left(\frac{2}{9}+\frac{7}{9}\right)-\frac{1}{2}\)
\(=1-1-\frac{1}{2}=-\frac{1}{2}\)
a) \(-\frac{5}{2}+\frac{1}{7}+\frac{6}{7}+\frac{1}{2}+\frac{3}{4}\)
\(=\left(\frac{-5}{2}+\frac{1}{2}\right)+\left(\frac{1}{7}+\frac{6}{7}\right)+\frac{3}{4}\)
\(=-2+1+\frac{3}{4}\)
\(=-1+\frac{3}{4}\)
\(=-\frac{1}{4}\)
m) (\(\frac{-5}{12}\)+\(\frac{6}{11}\))+(\(\frac{7}{17}\)+\(\frac{5}{11}\)+\(\frac{5}{12}\))
= \(\frac{-5}{12}\)+\(\frac{6}{11}\)+\(\frac{7}{17}\)+\(\frac{5}{11}\)+\(\frac{5}{12}\)
= (\(\frac{-5}{12}\)+\(\frac{5}{12}\))+(\(\frac{6}{11}\)+\(\frac{5}{11}\))+\(\frac{7}{17}\)
= 0+1+\(\frac{7}{17}\)
= \(\frac{24}{17}\)
n) (\(\frac{9}{16}\)+\(\frac{8}{-27}\))+(1+\(\frac{7}{16}\)+\(\frac{-19}{27}\))
= \(\frac{9}{16}\)+\(\frac{8}{-27}\)+1+\(\frac{7}{16}\)+\(\frac{-19}{27}\)
= (\(\frac{9}{16}\)+\(\frac{7}{16}\))+(\(\frac{8}{-27}\)+\(\frac{-19}{27}\))+1
= 1+(-1)+1
= 0+1
= 1
o) (6-2\(\frac{4}{5}\)).3\(\frac{1}{8}\)-1\(\frac{3}{5}\):\(\frac{1}{4}\)
= (6-\(\frac{14}{5}\)).\(\frac{25}{8}\)-\(\frac{8}{5}\):\(\frac{1}{4}\)
= \(\frac{16}{5}\).\(\frac{25}{8}\)-\(\frac{8}{5}\):\(\frac{1}{4}\)
= 10-\(\frac{8}{5}\):\(\frac{1}{4}\)
= 10-\(\frac{32}{5}\)
= \(\frac{18}{5}\)
CHÚC BẠN HỌC TỐT
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow\)\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(\Rightarrow\)\(3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(\Rightarrow\)\(2S=1-\frac{1}{3^7}\)
\(\Rightarrow\)\(S=\frac{1-\frac{1}{3^7}}{2}\)
\(S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3S=1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=1-\frac{1}{3^7}\)
\(S=\frac{1-\frac{1}{3^7}}{2}\)
A=$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}$
3A=$\frac{1}+frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{19683}$
3A-A=2A=1-1/59049=59048/59049
A=59048/118098
\(Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}\)
\(\Rightarrow Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5\cdot\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}\)
\(\Rightarrow Y=\frac{1}{5}\)
K CHO MH NHA