K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

a/ Đương nhiên là bạn tự vẽ

b/ Phương trình hoành độ giao điểm:

\(\frac{1}{2}x^2=\frac{1}{4}x+\frac{3}{2}\Leftrightarrow2x^2-x-6=0\Rightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=-\frac{3}{2}\Rightarrow y_2=\frac{9}{8}\end{matrix}\right.\)

\(\Rightarrow T=\frac{2-\frac{3}{2}}{2+\frac{9}{8}}=\frac{4}{25}\)

20 tháng 5 2019

Hỏi đáp Toán

20 tháng 1 2019

a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :

\(x^2=\left(k-1\right)x+2\)

\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)

\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)

Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .

b ) Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)

Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)

Theo đề bài \(y_1+y_2=y_1y_2\)

\(\Rightarrow\left(k-1\right)^2+4=4\)

\(\Rightarrow k=1\)

9 tháng 6 2020

Đây bạn nhé

9 tháng 6 2020

Sao ko đăng đc ảnh lên nhỉ?

7 tháng 8 2020

ap dung he thuc vi-et tinh x1+x2, x1.x2 cung duoc dung khong

đúng rồi