Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1
bình phương cả 2 vế ta được
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2x^2+2y^2+2z^2\)
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\) (vì x^2 +y^2 +z^2 =1)
Áp dụng BĐT cô si cho 2 số
\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\left(1\right)\)
\(\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\left(2\right)\)
\(\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\left(3\right)\)
(1)+(2)+(3)
=> \(2\left(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\right)\ge2\left(x^2+y^2+z^2\right)\)
<=> \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge1\)
Cộng 2 vào cả 2 vế ta đc
\(A^2\ge3\)
<=> \(\ge\sqrt{3}\)
Vậy Min A= \(\sqrt{3}\) khi x=y=z =\(\dfrac{1}{\sqrt{3}}\)
Lời giải khác:
Đặt \((\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y})\mapsto (a,b,c)\)
\(\Rightarrow (x^2,y^2,z^2)=(ac,ab,bc)\)
Bài toán trở thành tìm min của $A=a+b+c$ biết $ab+bc+ac=1$ và $a,b,c>0$
Theo hệ quả quen thuộc của BĐT AM-GM:
\(A^2=(a+b+c)^2\geq 3(ab+bc+ac)=3\)
\(\Rightarrow A\geq \sqrt{3}\)
Vậy \(A_{\min}=\sqrt{3}\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\hept{\begin{cases}x+y+z>1\\8x+9y+10z=100\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z\ge12\\8x+9y+10z=100\end{cases}}\)
\(\Rightarrow y+2z=100-8\left(x+y+z\right)\le100-8\cdot12=4\)
Mặt khác \(y,z\ge1\)suy ra \(3\le y+2z\le4\)\(\Rightarrow y+2z\in\left\{3,4\right\}\)