Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x^2+x-6\right)^2+3\left(2x^2+x-3\right)-9=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)^2+3\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-6+3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x=1\\x-\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-2;\frac{3}{2};1;-\frac{3}{2}\right\}\)
b) \(2y^4-9y^3+14y^2-9y+2=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-1\right)^2\left(2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\\left(y-1\right)^2=0\end{cases}}\)hoặc \(2y-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y-1=0\end{cases}}\)hoặc \(2y=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)hoặc \(y=\frac{1}{2}\)
Vậy tập nghiệm của PT là \(S=\left\{2;1;\frac{1}{2}\right\}\)
a) Đặt 2x2 + x - 6 = a
pt <=> a2 + 3( a + 3 ) - 9 = 0
<=> a2 + 3a + 9 - 9 = 0
<=> a( a + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 6 + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 3 ) = 0
<=> ( 2x2 + 4x - 3x - 6 )( 2x2 - 2x + 3x - 3 ) = 0
<=> [ 2x( x + 2 ) - 3( x + 2 ) ][ 2x( x - 1 ) + 3( x - 1 ) ] = 0
<=> ( x + 2 )( 2x - 3 )( x - 1 )( 2x + 3 ) = 0
<=> x = -2 hoặc x = 1 hoặc x = ±3/2
Vậy S = { -2 ; 1 ; ±3/2 }
b) 2y4 - 9y3 + 14y2 - 9y + 2 = 0
<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0
<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0
<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0
<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0
<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0
<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0
<=> y = 2 hoặc y = 1 hoặc y = 1/2
Vậy S = { 2 ; 1 ; 1/2 }
bạn tự kết luận nhé
a, \(\left(x+3\right)^2+\left(2x-1\right)^2=10\)
\(\Leftrightarrow x^2+6x+9+4x^2-4x+1=10\)
\(\Leftrightarrow5x^2+2x=0\Leftrightarrow x\left(5x+2\right)=0\Leftrightarrow x=-\frac{2}{5};x=0\)
b, \(\left(x-2\right)^2+\left(2x+1\right)^2=25\)
\(\Leftrightarrow x^2-4x+4+4x^2+4x+1=25\)
\(\Leftrightarrow5x^2-20=0\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=\pm2\)
c, \(\left(3x+7\right)\left(\frac{3}{5}-6\right)=0\Leftrightarrow3x+7=0\Leftrightarrow x=-\frac{7}{3}\)
Trả lời:
a, ( x + 3 )2 + ( 2x - 1 )2 = 10
<=> x2 + 6x + 9 + 4x2 - 4x + 1 = 10
<=> 5x2 + 2x + 10 = 10
<=> 5x2 + 2x = 0
<=> 5x ( x + 2 ) = 0
<=> x = 0 hoặc x + 2 = 0
<=> x = -2
Vậy S = { 0; - 2 }
b, ( x - 2 )2 + ( 2x + 1 ) 2 = 25
<=> x2 - 4x + 4 + 4x2 + 4x + 1 = 25
<=> 5x2 + 5 = 25
<=> 5x2 + 5 - 25 = 0
<=> 5x2 - 20 = 0
<=> 5 ( x2 - 4 ) = 0
<=> ( x - 2 ) ( x + 2 ) = 0
<=> x - 2 = 0 hoặc x + 2 = 0
<=> x = 2 hoặc x = - 2
Vậy S = { 2; - 2 }
c, ( 3x + 7 ) ( 3/5 - 6 ) = 0
<=> 3x + 7 = 0
<=> 3x = - 7
<= x = -7/3
Vậy S = { -7/3 }
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
a) (2x-4)(x2-16)=0
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm4\end{cases}}}\)
Vậy..
b) (x+5)2-25=0
\(\left(x+5\right)^2=25\)
\(\left(x+5\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}}\)
Vậy..
c) x2-6x+9=0
\(x.\left(1-6\right)=-9\)
\(x.\left(-5\right)=-9\)
\(x=\frac{9}{5}\)
chúc bạn học tốt !!!!
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
d.Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
em lớp 4 nhé nên anh thông cảm