K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{c+a}{5}=\frac{b+c}{4}=\frac{a+b}{3}=\frac{c+b-b-c+a+b}{5-4+3}=\frac{2a}{4}=\frac{a}{4}\left(1\right)\)

Từ (1) có: \(\frac{b+c}{4}=\frac{a+b}{3}\Leftrightarrow3b+3c=4a+4b\Leftrightarrow b=3c-4a\left(2\right)\)

Thế 2 vào biểu thức  M ta có: \(M=10a+3c-4a-7c+2017=6a-4c+2017\left(3\right)\)

Từ (1) có\(:\frac{c+a}{5}=\frac{a}{2}\Leftrightarrow2c+2a=5a\Leftrightarrow2c=3a\Leftrightarrow4c=6a\left(4\right)\)

Thế (4) vào (3) ta có: \(M=6a-6a+2017=2017\)

Vậy GT M = 2017

1 tháng 1 2020

+ Ta có : \(\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\)

                                                 \(\Rightarrow4a+b=3c\)

             + \(\frac{a+b}{3}=\frac{c+a}{5}\Rightarrow5a+5b=3c+3a\)

                                                 \(\Rightarrow2a+5b=3c\)

            + \(\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\)

                                                 \(\Rightarrow5b+c=4a\)

+ Ta có : \(\hept{\begin{cases}4a+b=3c\\5b+3a=3c\end{cases}\Rightarrow4a+b=5b+2a}\)

                                                         \(\Rightarrow2a=4b\)

                                                             \(\Rightarrow a=2b\)

+ Ta có : \(4a+b=3c\)

\(\Rightarrow4.2b+b=3c\)

\(9b=3c\)

\(\Rightarrow3b=c\)

+ Ta có : \(M=10a+b-7c+2017\)

                    \(=10.2b+b-7.3b+2017\)         

                       \(=20b+b-7.3b+2017\)

                         \(=21b-21b+2017\)

                              \(=0+2017=2017\)

Vậy M =2017 

Chúc bạn học tốt !!!

3 tháng 1 2018

Ta có: 

\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có: 3b=c

Thay (3) và (1) ta có: 2b=a

Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017

9 tháng 9 2019

a) Sửa lại đề là \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\left(1\right)\)

\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\left(2\right).\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

20 tháng 5 2019

Ta có : \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\Leftrightarrow10ab+10ac+b^2+bc=10ab+10b^2+ca+cb\)

\(\Leftrightarrow\)9ac=9b2 \(\Leftrightarrow\)\(\frac{a}{b}=\frac{b}{c}\)

15 tháng 11 2019

Bài 2:

Từ \(\frac{ab}{bc}=\frac{b}{c}\) với \(c\ne0\Rightarrow\frac{ab}{b}=\frac{bc}{c}\) và a, b, c > 0, ta suy ra đc \(\frac{a}{b}=\frac{b}{c}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=k^2\)

\(\frac{a}{c}=\frac{bk}{c}=\frac{\left(ck\right)k}{c}=k^2\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

14 tháng 11 2019

Bài 2:

Chúc bạn học tốt!