K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Chọn B.

Ta có: 

Suy ra: 

Xét điểm A(-2; 1) và  B(4; 7) , phương trình đường thẳng  AB: x - y + 3 = 0.

Gọi M(x; y)  là điểm biểu diễn của số phức z trên mặt phẳng Oxy.

Khi đó ta có  và ta thấy , suy ra quỹ tích M  thuộc đoạn thẳng AB.

Xét điểm C( 1; -1); ta có  , hình chiếu H  của C trên đường thẳng AB nằm trên đoạn AB.

Do đó 

Vậy 

24 tháng 2 2017

\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)

\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)

\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)

Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)

15 tháng 6 2017

vui Dạ cảm ơn ạ

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít

12 tháng 3 2022

tui ne2

8 tháng 3 2017

47. y=x ĐA: D

48. A(-4;0); B(0;4); C(x; 3)

\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)

A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D

49.A(2;-2); B(3;1); C(0;2)

\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)

=>Tam giác vuông cân=> ĐA:C

51. ĐA:D

52: A(-1;3); B(-3;-2); C(4;1)

\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)

ĐA: C

8 tháng 3 2017

điền bừa đi

5 tháng 9 2017

Mọi người giúp mình với ai tả lời mình sẽ cho 1 likekhocroi

6 tháng 9 2017

Đây chỉ là toán lớp 6 nang cao thôi ko phải lớp 12

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Câu 1:

\(w=(z-2+3i)(\overline{z}+1-2i)\) \(\in \mathbb{R}\)

\(\Leftrightarrow |z|^2+z(1-2i)+(3i-2)\overline{z}+4+7i\in\mathbb{R}\)

Đặt \(z=a+bi\Rightarrow (a+bi)(1-2i)+(3i-2)(a-bi)+7i\in\mathbb{R}\)

\(\Leftrightarrow -2a+b+3a+2b+7=0\) (phần ảo bằng 0)

\(\Leftrightarrow a+3b+7=0\)

Khi đó \(|z|=\sqrt{a^2+b^2}=\sqrt{b^2+(3b+7)^2}=\sqrt{10(b+2,1)^2+4,9}\) min khi \(b=-2,1\) kéo theo \(a=-0,7\)

Đáp án A.

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Câu 2:

Từ \(|iz+1|=2\Rightarrow |z-i|=2|-i|=2\)

Nếu đặt \(z=a+bi\) ta dễ thấy tập hợp các điểm biểu diễn số phức $z$ là điểm $M$ nằm trên đường tròn tâm \(I(0,1)\) bán kính bằng $2$

Số phức

Hiển nhiên \(|z-2|\) là độ dài của điểm điểm \(M\) biểu diễn $z$ đến điểm \(A(2,0)\). Ta thấy $MA$ max khi $M$ là giao điểm của $AI$ với đường tròn $(I)$

Ta có \(IA=\sqrt{IO^2+OA^2}=\sqrt{5}\)

\(\Rightarrow MA_{\max}=MI+IA=2+\sqrt{5}\)

Đáp án A.