K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Đáp án B

Phương pháp: Sử  dụng tiên đề  của  Bo  về  trạng thái dừng, và mối  quan  hệ  giữa  lực điện và lực hướng tâm trong chuyển động của electron quanh hạt nhân

Cách giải:

Theo mô hình hành tinh nguyên tử của Bo, Coi electron chuyển động tròn đều trên quỹ đạo thì :

Trong  chuyển động  của electron thì lực tĩnh điện  giữa  hạt nhân và electron đóng vai trò lực hướng tâm nên:

V
violet
Giáo viên
19 tháng 4 2016

Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:

\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)

Tương tự

\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)

\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)

Cộng (2) cho (1), so sánh với (3): 

\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)

                            => \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)

18 tháng 3 2016

Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)

\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)

\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)

Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)

Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)

                 \(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)

Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)

22 tháng 3 2016

B nha

đúng 100% lun ak

tick mik đi

mik tick lại cho

17 tháng 3 2016

Năng lượng của nguyên tử ở trạng thái dừng \(n\)

\(E_n =-\frac{13,6}{n^2}.(eV)\)

Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)

Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)

Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)

Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\) 

                                                              =>    \(f_3=f_1 -f_2.\)

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

16 tháng 5 2016

giải chi tiết nhé 

16 tháng 5 2016

Sóng cơ học

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

4 tháng 1 2019

Đáp án: B

Phương pháp: Sử  dụng tiên đề  của  Bo  về  trạng thái dừng, và mối  quan  hệ  giữa  lực điện và lực hướng tâm trong chuyển động tròn của electron quanh hạt nhân.

Theo mô hình hành tinh nguyên tử Bo, coi electron chuyển động tròn đều trên quỹ đạo thì:

Trong chuyển động của electron thì lực tĩnh điện giữa hạt nhân và electron đóng vai trò lực hướng tâm nên:

20 tháng 7 2016

\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\)\(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)

\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)