K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

Đáp án D

Số cách xếp 6 người thành hàng ngang là: 6!

Coi 2 người đàn bà là 1 thì số cách sắp xếp người lớn là: 4!=24

Hai người đàn bà đổi chỗ cho nhau ta được một trường hợp riêng nên số cách xếp người lớn là: 2.4!=48

 

ứng với mỗi cách xếp người lớn chỉ có một cách xếp trẻ con nên số cách để xếp 1 đứa trẻ ngồi giữa hai người đàn bà là: 48

⇒ p = 48 6 ! = 1 5

11 tháng 1 2017

Đáp án D

Số cách xếp 6 người thành hàng ngang là: 6!

Coi 2 người đàn bà là 1 thì số cách sắp xếp người lớn là: 4! = 24

Hai người đàn bà đổi chỗ cho nhau ta được một trường hợp riêng nên số cách xếp người lớn là: 2.4! = 48

ứng với mỗi cách xếp người lớn chỉ có một cách xếp trẻ con nên số cách để xếp 1 đứa trẻ ngồi giữa hai người đàn bà là: 48

⇒ p = 48 6 ! = 1 5

7 tháng 7 2018

Đáp án là D.

          Số phần tử không gian mẫu n Ω = 6 !  

          Gọi biến cố A" đứa bé ngồi giữa hai người đàn bà".

          + Xếp 2 người đàn bà ngồi 2 bên đứa bé có: 2! cách

          + Xem 2 người đàn bà và đứa bé là 1 vị trí sắp xếp với 3 người đàn ông còn lại có: 4! cách

          + Số phần tử của A : n A = 2 ! .4 !  

          Xác suất cần tìm P A = 2 ! .4 ! 6 ! = 1 15 .

25 tháng 5 2018

Chọn C.

Số phần tử của không gian mẫu : Ω = P 6 = 6 ! = 720  

Gọi α  là một nhóm gồm 3 người trong đó có đứa bé được xếp ở giữa 2 người đàn bà: Có hai phần tử α  

Có 4 phần tử gồm  α  và 3 người đàn ông. Xếp 4 người vào 4 vị trí, số cách xếp là: 

Ω A = 4 ! . 2 = 48

Xác suất xếp thỏa mãn yêu cầu bài:  P = Ω A Ω = 48 720 = 1 15 . 

9 tháng 12 2019

Đáp án D

24 tháng 3 2018

Chọn D

27 tháng 1 2016

Nguyễn Thị Thu Hà thật là oai oai oai học giỏi mà  bài tổng và hiệu cũng hỏi người khác

27 tháng 1 2016

ái chà chà cô giáo hướng dẫn rồi mà

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

9 tháng 2 2017

Chọn đáp án A

Phương pháp

Sử dụng nguyên lí vách ngăn.

Cách giải

n(Ω)=5!=120

Xếp Cường, Dũng, Đông vào 3 ghế bất kì có 3! cách, khi đó tạo ra 4 khoảng trống. Xếp An và Bình vào hai trong 4 khoảng trống đó có 4.3 = 12 cách.

Gọi A là biến cố: “An và Bình không ngồi cạnh nhau