Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để xác định các hệ số a và b ta dựa vào tọa độ các điểm mà đồ thị đi qua, lập hệ phương trình có hai ẩn a và b
a) Vì đồ thị đi qua \(A\left(\dfrac{2}{3};-2\right)\) nên ta có phương trình \(a.\dfrac{2}{3}+b=-2\)
Tương tự, dựa vào tọa độ của \(B\left(0;1\right)\) ta có \(0+b=1\)
Vậy, ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{2a}{b}+b=-2\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{9}{2}\\b=1\end{matrix}\right.\)
b) \(a=0;b=-2\)
c) \(a=\dfrac{1}{3};b=\dfrac{2}{3}\)
Vì đồ thị đi qua A(2/3; -2) nên ta có phương trình 2a/3 + b = -2
Tương tự, dựa vào tọa độ của B(0 ;1) ta có 0 + b = 1.
Vậy, ta có hệ phương trình.
Hàm số y = ax + b đi qua điểm M(1; 7).
\(\Rightarrow7=a+b.\left(1\right)\)
Hàm số y = ax + b đi qua điểm N(0; 3).
\(\Rightarrow3=b.\left(2\right)\)
Thay (2) vào (1), ta có:
\(7=a+3.\Leftrightarrow a=4.\)
Vậy các hệ số a và b là 4 và 3.
Đồ thị hàm số y = ax + b đi qua M(1;7) và N(0;3) nên tọa độ của M, N thỏa mãn phương trình .
Ta có a + b = 7 b = 3 ⇒ a = 4 b = 3 .
Vậy đáp án là B.
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a=-28\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-13\end{matrix}\right.\)
b: Vì (d)//y=-2/3x+1 nên a=-2/3
Vậy: (d): y=-2/3x+b
Thay x=4 và y=-3 vào (d), ta được:
b-8/3=-3
hay b=-1/3
a, Đths đi qua \(A\left(-1;-3\right)\Leftrightarrow-3=-a+b\left(1\right)\)
Đths đi qua \(B\left(2;3\right)\Leftrightarrow3=2a+b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy đths là \(y=2a-1\)
b, Đths đi qua \(M\left(-3;4\right)\Leftrightarrow4=-3a+b\left(1\right)\)
Đths song song với Ox \(\Leftrightarrow y=b=4\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow a=0\)
Vậy đths là \(y=4\)
A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b ⇒ b = 2 – a (1)
B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)
Thay (1) vào (2) ta được: 2a + 2 – a = 1 ⇒ a = –1 ⇒ b = 2 – a = 3.
Vậy a = –1; b = 3.
a = 0; b = -2