Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2-25x^2=0\)
\(\Rightarrow25x^2=2\)
\(\Rightarrow x^2=\frac{2}{25}\)
\(\Rightarrow x=\frac{\sqrt{2}}{5}\)
tíc mình nha
\(2-25x^2=0\)
\(\Leftrightarrow\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2}-5x=0\\\sqrt{2}+5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
Vậy: \(x=\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
Bài 2:
\(2x^3+6x^2=x^2+3x\)
\(\Rightarrow2x^3+6x^2-x^2-3x=0\)
\(\Rightarrow2x^3+5x^2-3x=0\)
\(\Rightarrow x\left(2x^2+5x-3\right)=0\)
\(\Rightarrow x\left(2x^2-x+6x-3\right)=0\)
\(\Rightarrow x\left[x\left(2x-1\right)+3\left(2x-1\right)\right]=0\)
\(\Rightarrow x\left(x+3\right)\left(2x-1\right)=0\)
=>x=0 hoặc x=-3 hoặc x=1/2
1)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Tới đây b cho từng cái = 0 rồi giải ra tìm x nha :)
Đặt \(m=3^{4^4},n=4^{\frac{5^6-1}{4}}=2^{\frac{5^6-1}{2}}\)
Khi đó ta có \(m^4=\left(3^{4^4}\right)^4=3^4^{^5};4n^4=4\left(4^{\frac{5^6-1}{4}}\right)^4=4\cdot4^{5^6-1}=4^{5^6}\)
Ta có \(A=m^4+4n^4=\left(m^4+4m^2n^2+4n^4\right)-4m^2n^2=\left(m^2+2n^2\right)^2-\left(2mn\right)^2\)
\(A=\left(m^2+2n^2-2mn\right)\left(m^2+2n^2+2mn\right)\)
\(m^2+2n^2+2mn>m^2+2n^2-2mn\)
\(=\left(m-n\right)^2+n^2\ge n^2=2^{5^6-1}>2^{8064}=\left(2^4\right)^{2016}>10^{2016}\)
Vậy bài toán được chứng minh
\(x^5+x^4+x^3+x^2+x+1=0\)
\(\Rightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)