Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn biểu thức có vẻ rối, nhưng ta chẳng cần quan tâm cái biến làm gì cả.
Coi như không có biến, ta có :
\(1+3+5+...+\left(2k-1\right)=3249\)
\(\Rightarrow\dfrac{\dfrac{\left(2k-1\right)-1}{2}+1}{2}\cdot\left(2x-1+1\right)=3249\)
\(\Rightarrow CALC\left(k\right)=57\)
Vậy \(k=57\)
a
9x=10y=z/2 và x-y+z=48
hay y/9=x/10=z/2 (vận dụng tỉ lệ thức) và x-y+z=48
từ tỉ lệ thức 9/y=x/10=z/2 và x-y+z=48
áp dụng dãy tỉ số bằng nhau ta có:
y/9=x/10=z/2=x-y=z/9-10+2=48/1=1
từ y/9=1=>y=1.9=9
x/10=1=>x=1.10=10
z/2=1=>1.2=2
vậy y=9
x=10
z=2
(hơi khó hỉu vì ghi bằng máy tính) thông cảm
Đặt \(\frac{x}{18}=\frac{y}{9}=k\)
\(\Rightarrow x=18k;y=9k\)
Thay vào P ta được:
\(P=\frac{2.18k-3.9k}{2.18k+3.9k}\)
\(\Rightarrow P=\frac{36k-27k}{36k+27k}\)
\(\Rightarrow P=\frac{k\left(36-27\right)}{k\left(36+27\right)}\)
\(\Rightarrow P=\frac{9k}{63k}\)
\(\Rightarrow P=\frac{1}{7}\)
Vậy \(P=\frac{1}{7}.\)
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\)
=> x=2.5=10
y=2.2=4
z=2.3=6
Theo đề bài, ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\) và 2x-3y+5z=38
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
- \(\frac{x}{5}=2.5=10\)
- \(\frac{y}{2}=2.2=4\)
- \(\frac{z}{3}=2.3=6\)
Vậy x=10,y=4,z=6
^...^ ^_^
\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)
Có \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)
Vậy \(C=8\)
đề như thế này \(B=\frac{4x-9}{3x+y}+\frac{y-4y+y}{3y+x}\)
hay như thế nào vậy bạn
Ta có:\(x^3y^5+3x^3y^5+5x^3y^5+...+\left(2k-1\right)x^3y^5=3249x^3y^5\)
\(x^3y^5\left(1+3+5+...+2k-1\right)=3249x^3y^5\)
\(\Rightarrow1+3+5+...+2k-1=3249\)
\(\Rightarrow\frac{\left(\frac{2k-1-1}{2}+1\right).\left(2k-1+1\right)}{2}=3249\)
\(\Rightarrow\frac{k.2k}{2}=3249\)
\(\Rightarrow k^2=3249\)
\(\Rightarrow k=57\) hoặc k=-57
bạn lấy đề này ở đâu vậy