Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có : \(x\ge0\)
\(\Rightarrow x^3+4x\ge0\)
\(\Rightarrow\)\(x^3+4x+1\ge1\)
có \(3x^2\ge0\) ( vì x >=0)
suy ra
\(x^3+4x+1\ge3x^2\)
a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
a )
\(\left(3x+1\right)\left(3x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)=x\left(6-x\right)^2\)
\(\Leftrightarrow9x^2-1-x^3+8=x^3-12x^2+36x\)
\(\Leftrightarrow-2x^3+21x^2-36x+7=0\)
Dùng máy tính casio giải phương trình bậc 3 .
\(\Rightarrow\left\{{}\begin{matrix}x_1=8,408912008\\x_2=1,868305916\\x_3=0,2227820764\end{matrix}\right.\)
b )
\(27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
\(\Leftrightarrow27x^3+27x^2-27x^3-27x^2-9x-1=-8\)
\(\Leftrightarrow-9x=-7\)
\(\Leftrightarrow x=\dfrac{7}{9}\)
c )
\(\left(4x+1\right)\left(16x^2-4x+1\right)-16\left(4x^2-5\right)=17\)
\(\Leftrightarrow64x^3+1-64x^2+80-17=0\)
\(\Leftrightarrow64x^3-64x^2+64=0\)
\(\Leftrightarrow x^3-x^2+1=0\) . Tới đây mình botay.
Chúc bạn học tốt !!
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)