Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(6x^2-xy-y^2\)
\(=6x^2-3xy+2xy-y^2\)
\(=3x\left(2x-y\right)+2y\left(x-y\right)\)
\(=\left(3x+2y\right)\left(x-y\right)\)
b, \(8x^2-23x-3\)
\(=8x^2-24x+x-3\)
\(=8x\left(x-3\right)+\left(x-3\right)=\left(8x+1\right)\left(x-3\right)\)
c, \(10x^2-11x-6\)
\(=10x^2-15x+4x-6\)
\(=5x\left(2x-3\right)+2\left(2x-3\right)\)
\(=\left(5x+2\right)\left(2x-3\right)\)
d, \(x^3-6x^2+11x-6\)
\(=x^3-3x^2-3x^2+9x+2x-6\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x^2-3x+2\right)\left(x-3\right)\)
\(=\left(x^2-2x-x+2\right)\left(x-3\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
a)
\(x^3+6x^2+11x+6=(x^3-x)+(6x^2+12x+6)\)
\(=x(x^2-1)+5(x^2+2x+1)\)
\(=x(x-1)(x+1)+6(x+1)^2\)
\(=(x+1)[x(x-1)+6(x+1)]=(x+1)(x^2+5x+6)\)
\(=(x+1)(x^2+2x+3x+6)\)
\(=(x+1)[x(x+2)+3(x+2)]=(x+1)(x+2)(x+3)\)
b) \(x^3+6x^2-13x-42\)
\(=x^3+2x^2+4x^2+8x-21x-42\)
\(=x^2(x+2)+4x(x+2)-21(x+2)\)
\(=(x+2)(x^2+4x-21)\)
\(=(x+2)[x^2-3x+7x-21)\)
\(=(x+2)(x+7)(x-3)\)
c)
\(x^3-5x^2+8x-4=(x^3-x^2)-4x^2+8x-4\)
\(=x^2(x-1)-4(x^2-2x+1)\)
\(=x^2(x-1)-4(x-1)^2\)
\(=(x-1)[x^2-4(x-1)]=(x-1)(x^2-4x+4)\)
\(=(x-1)(x-2)^2\)
d) \(2x^3-x^2+3x+6\)
\(=2x^3+2x^2-3x^2+3x+6\)
\(=2x^2(x+1)-3(x^2-x-2)\)
\(=2x^2(x+1)-3[x^2+x-2x-2]\)
\(=2x^2(x+1)-3[x(x+1)-2(x+1)]\)
\(=2x^2(x+1)-3(x+1)(x-2)\)
\(=(x+1)(2x^2-3x+6)\)
\(x^3+3.x^2.2+3.x.2^2+2^2-x+2=\left(x+2\right)^3-\left(x+2\right)=\left(x+2\right)\left(\left(x-2\right)^2-1\right)\)
x3+6x2+11x+6
= x3+3x2+3x2+9x+2x+6
=x2(x+3)+ 3x(x+3)+2(x+3)
=(x+3)(x2+3x+2)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
câu c:x^4-2x^3-x^2+x^3-2x^2-x+5x^2-10x-5=x^2(x^2-2x-1)+x(x^2-2x-1)+5(x^2-2x-1)=(x^2-2x-1)(x^2+x+5)
\(=\dfrac{x^3+x^2+7x^2+7x+12x+12}{x^3+x^2+5x^2+5x+6x+6}\)
\(=\dfrac{x^2\left(x+1\right)+7x\left(x+1\right)+12\left(x+1\right)}{x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x^2+7x+12\right)}{\left(x+1\right)\left(x^2+5x+6\right)}\)
\(=\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{x^2+3x+4x+12}{x^2+2x+3x+6}\)
\(=\dfrac{x\left(x+3\right)+4\left(x+3\right)}{x\left(x+2\right)+3\left(x+2\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+4}{x+2}\)
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
\(x^3-6x^2+11x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)