\(x^2+\sqrt{x+4}+\sqrt{x+11}=x+27\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........

30 tháng 8 2019

a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))

<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1

<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)

TH1: \(0\le\sqrt{x+2}< 2\)

Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)

<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)

<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))

TH2 : \(2\le\sqrt{x+2}\le3\)

Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)

<=> \(1=1\) (luôn đúng)

Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)

TH3 \(\sqrt{x+2}>3\)

Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))

Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)

b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))

Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)

Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)

<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)

Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

<=> \(x^2-10x+27\ge2\) (2)

Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)

c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))

<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)

31 tháng 8 2019

d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)

<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)

<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)

<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)

=>x=\(2\sqrt{2}\)

19 tháng 8 2020

c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)

\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)

\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)

d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)

\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)

16 tháng 10 2019

đkxđ: ....

\(\sqrt{x+4}+\sqrt{x+11}=x+27-x^2\)

\(\Leftrightarrow x+4+2\sqrt{\left(x+4\right)\left(x+11\right)}+x+1=x^2+729+x^4+54x-2x^3-54x^2\)

\(\Leftrightarrow2x+5+2\sqrt{\left(x+4\right)\left(x+11\right)}=x^4-2x^3-53x^2+54x+729\)

\(\Leftrightarrow2\sqrt{x^2+15x+44}=x^4-2x^3-53x^2+52x+724\)

\(\Leftrightarrow2\sqrt{x^2+15x+44}=\left(x-2\right)\left(x^3-53x-54\right)+616\) 

.........

25 tháng 11 2018

a) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}-\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}+1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)}{\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\dfrac{\sqrt{2}\left(\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\right)}{\sqrt{2-1}}=\sqrt{2}.\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\)(1)

Đặt A=\(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\Leftrightarrow A^2=\sqrt{2}-1+\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}-2\sqrt{1}=2\sqrt{2}-2\Leftrightarrow A=\pm\sqrt{2\sqrt{2}-2}\)

Ta có \(\sqrt{\sqrt{2}-1}< \sqrt{\sqrt{2}+1}\Leftrightarrow\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}< 0\Leftrightarrow A< 0\)

Vậy A=\(-\sqrt{2\sqrt{2}-2}\)

(1)\(=\sqrt{2}.\left(-\sqrt{2\sqrt{2}-2}\right)=-\sqrt{4\sqrt{2}-4}\)

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}=\sqrt{3-2.\sqrt{3}.1+1}+\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{9.3}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}}-3\sqrt{3}=\left|\sqrt{3}-1\right|+\sqrt{4+2\sqrt{3}}-3\sqrt{3}=\sqrt{3}-1-3\sqrt{3}+\sqrt{3+2\sqrt{3}+1}=-2\sqrt{3}-1+\sqrt{\left(\sqrt{3}+1\right)^2}=-2\sqrt{3}-1+\sqrt{3}+1=-\sqrt{3}\)

c) \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-3\sqrt{x}-2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left[3\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3\sqrt{x}-2\right)}{\sqrt{x}+3}=\dfrac{2-3\sqrt{x}}{\sqrt{x}+3}\)

24 tháng 10 2017

GIÚP MÌNH VỚI MÌNH ĐANG VỘI

19 tháng 8 2016

d/ Điều kiện xác định : \(4\le x\le6\)

 Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)

\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)

Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)

Vậy pt có nghiệm x = 5

19 tháng 8 2016

a/ ĐKXĐ : \(x\ge0\) 

\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)

Tới đây xét các trường hợp : 

1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)

2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)

3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)

Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)