Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)
Để phương trình có nghiệm \(\Delta\ge0\)
\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2\le m\le0\)
\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)
Để phương trình có nghiệm thì \(\Delta\ge0\)
\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)
Vậy...
Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a)
\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)
Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\) (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó
khác nhau và cùng thỏa mãn ( b) , hay là :
\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)
\(\left(\Rightarrow m\ne1\right)\)
\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)
\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)
Vậy \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
Ta có: \(\Delta=b^2-4ac=4m^2-12m+9-4\left(m^2-3m+2\right)=1\)
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=m-1\) và \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=m-2\)
Từ giả thiết ta được: \(-3< m-2< m-1< 2\)
\(\Rightarrow\left\{{}\begin{matrix}-3< m-2\\m-1< 2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
Vậy........