Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta'=m^2-\left(m-4\right)=m^2-m+4=m^2-2.m.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\)
\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0;\forall m\)
=> phương trình (1) luôn có hai nghiệm phân biệt với mọi m
b) Áp dụng định lí Viet ta có:
\(x_1.x_2=m-4\)
\(x_1+x_2=-2m\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(-2m\right)^2-2\left(m-4\right)=4m^2-2m+8\)
=> \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(-2m\right)\left(4m^2-2m+8-\left(m-4\right)\right)\)
\(=-2m\left(4m^2-3m+12\right)\)
Theo bài ra ta có:
\(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1.x_2}\)
Thay vào ta có:
\(-2m=\frac{-2m\left(4m^2-3m+12\right)}{m-4}\)( đk m khác 4)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m-4=4m^2-3m+12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\left(tm\right)\\4m^2-4m+16=0\left(l\right)\end{cases}\Leftrightarrow m=0}\)
Vì \(4m^2-4m+16=\left(2m-1\right)^2+15>0\) với mọi m
Vậy m =0
Ta có : \(x^2+\left(m^2+1\right)x+m=2\)
\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =))
b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)
Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )
Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)
\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)
Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)
Tự lm nốt vì I chưa thuộc hđt mà lm )):
a,\(x^2+\left(m^2+1\right)x+m=2\)
\(< =>x^2+\left(m^2+1\right)x+m-2=0\)
Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)
b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)
\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)
\(< =>4m-8< m^4+1\)
\(< =>4m-9< m^4\)
\(< =>m>\sqrt[4]{4m-9}\)
Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)
\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)
\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)
đến đây dễ rồi ha
a)
\(x^2-2\left(m+1\right)x+4m-m^2=0\)
Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m2 )
\(\Delta'=b'^2-ac\)
= \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)
= m2 + 2m + 1 -4m +m2
= 2m2 -2m + 1
= 2 ( m-1)2 > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)
a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(=m^2+2m+1-4m+m^2\)
\(=2m^2-2m+1\)
\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)
\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)
\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)
b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)
theo bài ra \(A=\left|x_1-x_2\right|\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)
\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)
\(\Leftrightarrow A^2=8m^2-8m+4\)
\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)
\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)
dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)
vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)
\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)
\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)
a) Khi m = 1, pt trở thành:
\(x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(b)\Delta'=b'^2-ac\\ =\left(-m\right)^2-1\left(-4m-11\right)\\ =m^2+4m+11\\ =\left(m^2+2.m.2+2^2\right)+7\\ =\left(m+2\right)^2+7>\forall m\)
\(c)\)Theo hệ thức Vi - ét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1.x_2=\frac{c}{a}=-4m-11\end{matrix}\right.\)
\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\\ \Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}=-5\\ \Leftrightarrow\frac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}=-5\\ \Leftrightarrow\frac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\\ \Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)
Thay vào là được nhé! Tự tiếp giúp mình
a) \(\Delta'=m^2+1>0\forall m\)
Vậy nên phương trình luôn có 2 nghiệm phân biệt.
b) Theo định lý Viet ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)
Vậy thì \(x_1^2+x_2^2-x_1.x_2=\left(x_1+x_2\right)^2-2x_1.x_2-x_1.x_2\)
\(=\left(x_1+x_2\right)^2-3x_1.x_2\)
\(=\left(2m\right)^2-3.\left(-1\right)=4m^2+3\)
Để \(x_1^2+x_2^2-x_1.x_2=7\) thì \(4m^2+3=7\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
KL.
a, Có : denta = b^2 - 4ac = (-2)^2 - 4.1.(-1) = 8
denta > 0 => pt luôn có 2 nghiệm phân biệt
Vậy pt luôn có 2 nghiệm phân biệt
Tk mk nha