\(x^2-2\left(m+1\right)x+2m+3=0\)0

Tìm m để PT có 2 nghiệm x1 , x2 TM 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Vì phương trình có 2 nghiệm x1;x2 
=> Theo vi-ét ta có 

x+ x= 2(m+1) và x1x= 2m+3 

theo bài ra ta có 

(x1 - x2)2 = 4

<=> x12 - 2x1x+ x22  = 4

<=> x12 + 2x1x+ x22 - 4x1x2 = 4

<=> (x1 + x2)2  - 4x1x2  = 4

<=> 4(m+1)2 - 4(2m+3) = 4

<=> (m+1)2 - (2m+3) = 1

<=> m2 + 2m +1 -2m -3 -1 = 0

<=> m2 - 3 = 0

<=> m2 = 3

<=> m\(=\pm\sqrt{3}\)

Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4

28 tháng 1 2020

\(x^2-2\cdot x\cdot\left(m-1\right)+2m-3=0\)

Ta có \(\Delta=4\cdot\left(m-1\right)^2-4\cdot\left(2m-3\right)\)

\(\Leftrightarrow\Delta=4m^2-16m+16=4\cdot\left(m-2\right)^2\ge0\forall m\)

+) Khi \(\Delta=0\Leftrightarrow m=2\Leftrightarrow x_1=x_2=\frac{2\cdot\left(m-1\right)}{2}=m-1=1\)

Khi đó \(x_1^2-2x_2=-1\) ( loại )

+) Khi \(\Delta>0\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{2\cdot\left(m-1\right)+\sqrt{4\left(m-2\right)^2}}{2}=m-1+\left|m-2\right|\\x_2=\frac{2\cdot\left(m-1\right)-\sqrt{4\left(m-2\right)^2}}{2}=m-1-\left|m-2\right|\end{matrix}\right.\)

* Xét \(m\ge2\Leftrightarrow\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)

\(\Rightarrow\left(2m-3\right)^2-2=7\Leftrightarrow\left(2m-3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}m=3\left(chon\right)\\m=0\left(loai\right)\end{matrix}\right.\)

* Xét \(m< 2\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)

\(\Rightarrow1-2\cdot\left(2m-3\right)=7\Leftrightarrow m=0\left(chon\right)\)

Vậy \(m\in\left\{0;3\right\}\) thì phương trình có 2 nghiệm thỏa mãn.

28 tháng 1 2020

\(x^2-2\left(m-1\right)x+2m-3=0\)

( Δ'=b'^2-ac = \(\left(m-2\right)^2\)\(\ge0\) ∀ m ϵ R)

\(\Leftrightarrow x^2-2mx+2x+2m-3=0\)

\(\Leftrightarrow x^2-2mx+3x-x+2m-3=0\)

\(\Leftrightarrow x^2-x-2mx+2m+3x-3=0\)

\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2m+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x_{ }=1\\x_{ }=2m-3\end{matrix}\right.\)(*)

Thay (*) vào điều kiện \(x_1^2-2x_2=7\)

Ta được 2 trường hợp :

Với \(\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)

Thay vào (*) được m=0 (1)

TH2: \(\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)

Ta thay vào (*) và tính được :

\(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)(2)

Từ (1) và (2) suy ra \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)thỏa mãn điều kiện.

11 tháng 7 2015

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)

\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)

Vậy  \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.

 

4 tháng 12 2019

Áp dụng định lí viet ta có:

\(\hept{\begin{cases}x_1+x_2+x_3=5\\x_1x_2+x_2x_3+x_3x_1=2m+2\end{cases}}\)

Ta có: \(x_1^2+x_2^2+x_3^2=41\)

<=> \(\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)=41\)

<=> \(25-2\left(2m+2\right)=41\)

<=> \(m=-5.\)

18 tháng 2 2018

hạn cuối?

18 tháng 2 2018

mà từ, cái này hơi gay, nếu nghĩ ra thì tớ giải cho.

NV
9 tháng 7 2020

\(ac=-m^2+m-4=-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm trái dấu

\(x_1< x_2\Rightarrow x_1< 0< x_2\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=2\)

\(\Leftrightarrow-x_1-x_2=2\)

\(\Leftrightarrow x_1+x_2+2=0\)

\(\Leftrightarrow m+2=0\Rightarrow m=-2\)

20 tháng 5 2019

\(a)\) Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(1-m\right)^2-m^2+3m=1-2m+m^2-m^2+3m=m+1>0\)\(\Leftrightarrow\)\(m>-1\)

Vậy để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(m>-1\)

\(b)\) Ta có : \(T=x_1^2+x_2^2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(T=\left(x_1+x_2\right)^2-2x_1x_2+\left(1-m\right)\left(x_1+x_2\right)+m^2-3m\)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\\x_1x_2=m^2-3m\end{cases}}\)

\(\Rightarrow\)\(T=4\left(1-m\right)^2-2\left(m^2-3m\right)-2\left(1-m\right)\left(1-m\right)+m^2-3m\)

\(T=4m^2-8m+4-2m^2+6m-2m^2+4m-2+m^2-3m\)

\(T=m^2-m+2=\left(m^2-m+\frac{1}{4}\right)+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=\frac{1}{2}\) ( thoả mãn ) 

Vậy GTNN của \(T=\frac{7}{4}\) khi \(m=\frac{1}{2}\)